Skip to content

Commit 0966580

Browse files
authored
Merge pull request #15708 from drjfloyd/master
FDS Source: Allow for dynamic bi-dir probe calibration constant
2 parents 13b4f26 + 156f131 commit 0966580

File tree

2 files changed

+16
-5
lines changed

2 files changed

+16
-5
lines changed

Manuals/FDS_User_Guide/FDS_User_Guide.tex

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -10567,14 +10567,14 @@ \subsection{Bi-Directional Probe}
1056710567
\label{info:bidir_probe}
1056810568
\label{bi_dir}
1056910569

10570-
The output quantity \ct{BI-DIRECTIONAL PROBE} is the velocity of a modeled bi-directional probe. A bi-directional probe uses the following equation:
10570+
The output quantity \ct{BI-DIRECTIONAL PROBE} is the velocity of a modeled bi-directional probe. A bi-directional probe uses the following equation~\cite{McCaffrey:1976}:
1057110571
\be
1057210572
C \sqrt{\frac{2 \Delta P}{\rho}}
1057310573
\label{BDP}
1057410574
\ee
1057510575
where $C$ is a calibration constant (default value is 0.93), $\Delta P$ is the pressure difference across the probe, and $\rho$ is the gas density at the probe. In a typical experiment, the gas density is computed assuming standard pressure (101325 Pa), the molecular weight of air (28.8 g/mol), and the temperature as measured by a thermocouple near the probe.
1057610576

10577-
Bi-directional probes have biases due to both the Reynolds number (based on the probe diameter) of the flow and the angle of the flow with respect to the probe axis~\cite{McCaffrey:1976}. At low Reynolds number a probe will measure a higher effective velocity. As the angle of the flow vector with the axis increases, the effective velocity at first increases up to an angle of 30$^\circ$ due to a low pressure region forming downstream of the probe, and then decreases reaching no measured flow at an angle of 90$^\circ$. This model accounts for these sensitivities and the impact of density differences from varied molecular weight at the probe. The orientation of the probe can be specified with either \ct{IOR} or \ct{ORIENTATION} on \ct{DEVC}. A probe with \ct{IOR}=-1 would have a positive velocity output when the flow is in the -x direction. Parameters for the probe can be specified with a \ct{PROP_ID} on the \ct {DEVC}. The calibration constant (default of 0.93) and the probe diameter (default of 0.0254 m) can be set respectively with \ct{CALIBRATION_CONSTANT} and \ct{PROBE_DIAMETER} on \ct{PROP}. If the probe temperature is an aspirated thermocouple or other measurement not sensitive to the radiative environment, then set \ct{TC=F} on \ct{PROP}. Thermocouple specific properties for a bi-directional probe, see Section~\ref{info:THERMOCOUPLE}, should be set with the same \ct{PROP} as for the probe.
10577+
Bi-directional probes have biases due to both the Reynolds number (based on the probe diameter) of the flow and the angle of the flow with respect to the probe axis~\cite{McCaffrey:1976}. At low Reynolds number a probe will measure a higher effective velocity. As the angle of the flow vector with the axis increases, the effective velocity at first increases up to an angle of 30$^\circ$ due to a low pressure region forming downstream of the probe, and then decreases reaching no measured flow at an angle of 90$^\circ$. This model accounts for these sensitivities and the impact of density differences from varied molecular weight at the probe. The orientation of the probe can be specified with either \ct{IOR} or \ct{ORIENTATION} on \ct{DEVC}. A probe with \ct{IOR}=-1 would have a positive velocity output when the flow is in the -x direction. Parameters for the probe can be specified with a \ct{PROP_ID} on the \ct {DEVC}. The calibration constant (default of 0.93) and the probe diameter (default of 0.0254 m) can be set respectively with \ct{CALIBRATION_CONSTANT} and \ct{PROBE_DIAMETER} on \ct{PROP}. If the probe temperature is an aspirated thermocouple or other measurement not sensitive to the radiative environment, then set \ct{TC=F} on \ct{PROP}. Thermocouple specific properties for a bi-directional probe, see Section~\ref{info:THERMOCOUPLE}, should be set with the same \ct{PROP} as for the probe. If a dynamic calibration constant based on the Reynolds number calibration in McCaffrey~\cite{McCaffrey:1976} was used set \ct{CALIBRATION_CONSTANT=-1}.
1057810578

1057910579
Figure~\ref{bi_dir_fig} shows the results of a bi-directional probe with varying angle to a 1~m/s flow and varying flow speed.
1058010580
\begin{figure}[ht]

Source/dump.f90

Lines changed: 14 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -7341,7 +7341,7 @@ REAL(EB) RECURSIVE FUNCTION GAS_PHASE_OUTPUT(T,DT,NM,II,JJ,KK,IND,IND2,Y_INDEX,Z
73417341
EXPON,Y_SPECIES,MEC,Y_SPECIES2,Y_H2O,R_Y_H2O,R_DN,SGN,Y_ALL(N_SPECIES),H_S,D_Z_N(0:I_MAX_TEMP),&
73427342
DISSIPATION_RATE,S11,S22,S33,S12,S13,S23,DUDX,DUDY,DUDZ,DVDX,DVDY,DVDZ,DWDX,DWDY,DWDZ,ONTHDIV,SS,ETA,DELTA,R_DX2,&
73437343
UVW,UODX,VODY,WODZ,XHAT,ZHAT,BBF,GAMMA_LOC,VC,VOL,PHI,GAS_PHASE_OUTPUT_CC,&
7344-
GAS_PHASE_OUTPUT_CFA,CFACE_AREA,VELOCITY_COMPONENT(1:3),ATOTV(1:3),TMP_F,R_D,MW,PROBE_TMP,PROBE_RHO
7344+
GAS_PHASE_OUTPUT_CFA,CFACE_AREA,VELOCITY_COMPONENT(1:3),ATOTV(1:3),TMP_F,R_D,MW,PROBE_TMP,PROBE_RHO,PROBE_DELTA_P
73457345
INTEGER :: N,I,J,K,NN,IL,III,JJJ,KKK,IP,JP,KP,FED_ACTIVITY,IP1,JP1,KP1,IM1,JM1,KM1,IIM1,JJM1,KKM1,NR,NS,RAM,&
73467346
ICC,JCC,NCELL,AXIS,ICF,NFACE,JCF,JCC_LO,JCC_HI,PDPA_FORMULA,IC
73477347
REAL(FB) :: RN
@@ -7918,8 +7918,19 @@ REAL(EB) RECURSIVE FUNCTION GAS_PHASE_OUTPUT(T,DT,NM,II,JJ,KK,IND,IND2,Y_INDEX,Z
79187918
CALL GET_VISCOSITY(ZZ_GET,MU_G,TMP(II,JJ,KK))
79197919
RE_D = MIN(3800._EB,MAX(40._EB,RHO(II,JJ,KK)*VEL*PY%PROBE_DIAMETER/MU_G))
79207920
FAC = 1.533_EB-0.001366_EB*RE_D+0.000001688_EB*RE_D**2-0.0000000009706_EB*RE_D**3+&
7921-
0.0000000000002555_EB*RE_D**4-2.484E-17_EB*RE_D**5
7922-
GAS_PHASE_OUTPUT_RES = SIGN(1._EB,COSTHETA)*VEL*PY%CALIBRATION_CONSTANT*FAC*SQRT(RHO(II,JJ,KK)/PROBE_RHO)
7921+
0.0000000000002555_EB*RE_D**4-2.484E-17_EB*RE_D**5
7922+
IF (PY%CALIBRATION_CONSTANT > 0._EB) THEN
7923+
GAS_PHASE_OUTPUT_RES = SIGN(1._EB,COSTHETA)*VEL*PY%CALIBRATION_CONSTANT*FAC*SQRT(RHO(II,JJ,KK)/PROBE_RHO)
7924+
ELSE
7925+
PROBE_DELTA_P = (VEL*FAC)**2*RHO(II,JJ,KK)*0.5_EB
7926+
! LJ AIR viscosity fit 100 K to 5000 K
7927+
MU_G = = 1.5205E-22_EB*PROBE_TMP**5 - 2.1417E-18_EB*PROBE_TMP**4 + 1.1402E-14_EB*PROBE_TMP**3 - &
7928+
2.9846E-11_EB*PROBE_TMP**2 + 5.9898E-8_EB*PROBE_TMP + 0.000002352_EB
7929+
RE_D = MIN(3800._EB,MAX(40._EB,PROBE_RHO*VEL*PY%PROBE_DIAMETER/MU_G))
7930+
FAC = 1.533_EB-0.001366_EB*RE_D+0.000001688_EB*RE_D**2-0.0000000009706_EB*RE_D**3+&
7931+
0.0000000000002555_EB*RE_D**4-2.484E-17_EB*RE_D**5
7932+
GAS_PHASE_OUTPUT_RES = SIGN(1._EB,COSTHETA)*1._EB/FAC*SQRT(2*PROBE_DELTA_P/PROBE_RHO)
7933+
ENDIF
79237934

79247935
CASE(130) ! EXTINCTION
79257936
ZZ_GET(1:N_TRACKED_SPECIES) = ZZ(II,JJ,KK,1:N_TRACKED_SPECIES)

0 commit comments

Comments
 (0)