Skip to content

Commit 7e4b001

Browse files
authored
Merge pull request #14328 from mcgratta/master
FDS Source: Issue #14327. Update Holman refs
2 parents 8168a61 + 3b59c30 commit 7e4b001

File tree

6 files changed

+24
-14
lines changed

6 files changed

+24
-14
lines changed

Manuals/Bibliography/FDS_general.bib

Lines changed: 9 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -2805,6 +2805,15 @@ @BOOK{Holman:1
28052805
year = {1990},
28062806
}
28072807

2808+
@BOOK{Holman:2,
2809+
author = {Holman, J.P.},
2810+
title = {Heat Transfer},
2811+
edition = {10th},
2812+
publisher = {McGraw-Hill},
2813+
address = {New York},
2814+
year = {2010}
2815+
}
2816+
28082817
@TECHREPORT{Hostikka:2008,
28092818
author = {Hostikka, S.},
28102819
title = {{Development of fire simulation models for radiative heat transfer and probabilistic risk assessment}},

Manuals/FDS_Technical_Reference_Guide/Solid_Chapter.tex

Lines changed: 2 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -113,14 +113,15 @@ \subsubsection{Empirical Natural/Forced Convection Model}
113113
The following expressions are simplifications of those given in Ref.~\cite{Incropera:1} under the assumption that $\PR=0.7$.
114114
\be
115115
\NU_{\rm free} = \left\{ \begin{array}{ll}
116-
\left( 0.825 + 0.324 \, \hbox{Ra}^{1/6} \right)^2 & \hbox{Vertical plate or cylinder} \\
116+
\left( 0.825 + 0.324 \, \hbox{Ra}^{1/6} \right)^2 & \hbox{Vertical plate or cylinder\footnotemark} \\
117117
0.54 \, \hbox{Ra}^{1/4} & \hbox{Horizontal hot plate facing up or cold plate facing down, Ra}\le 10^7 \\
118118
0.15 \, \hbox{Ra}^{1/3} & \hbox{Horizontal hot plate facing up or cold plate facing down, Ra} > 10^7 \\
119119
0.52 \, \hbox{Ra}^{1/5} & \hbox{Horizontal hot plate facing down or cold plate facing up} \\
120120
\left( 0.60 + 0.321 \, \hbox{Ra}^{1/6} \right)^2 & \hbox{Horizontal cylinder} \\
121121
2 + 0.454 \, \hbox{Ra}^{1/4} & \hbox{Sphere}
122122
\end{array} \right.
123123
\ee
124+
\footnotetext{The heat transfer coefficient for a vertical plate or cylinder is simplified to $h=1.31 \, (\Delta T)^{1/3}$~\cite{Holman:2} in cases where the back side of a solid obstruction is outside the computational domain and the gas temperature is assumed to be ambient. }
124125
For forced convection, the Nusselt number takes the form:
125126
\be
126127
\NU_{\rm forced} = C_0 + \left( C_1 \, \RE^n - C_2 \right) \, \PR^m \quad ; \quad \RE = \frac{\rho |\bu| L}{\mu} \quad ; \quad m=1/3

Manuals/FDS_Verification_Guide/FDS_Verification_Guide.tex

Lines changed: 8 additions & 8 deletions
Original file line numberDiff line numberDiff line change
@@ -1884,7 +1884,7 @@ \section{Blasius boundary layer (\texorpdfstring{\ct{blasius}}{blasius})}
18841884
\section{Pohlhausen thermal boundary layer (\texorpdfstring{\ct{Pohlhausen}}{Pohlhausen})}
18851885
\label{sec:Pohlhausen}
18861886

1887-
This write up follows Appendix B of \cite{Holman:1}. The nondimensional temperature as a function of the similarity variable $\eta$ is taken to be
1887+
This write up follows Appendix B of \cite{Holman:2}. The nondimensional temperature as a function of the similarity variable $\eta$ is taken to be
18881888
\begin{equation}
18891889
\label{eq:pohl_theta}
18901890
\theta(\eta) \equiv \frac{T(\eta) - T_w}{T_\infty - T_w}
@@ -1900,7 +1900,7 @@ \section{Pohlhausen thermal boundary layer (\texorpdfstring{\ct{Pohlhausen}}{Poh
19001900
\label{eq:pohl_soln}
19011901
\theta(\eta) = \frac{\displaystyle \int_0^\eta \exp\left( - \frac{\mathrm{Pr}}{2} \int_0^\eta f \d \eta \right) \d \eta}{\displaystyle \int_0^\infty \exp\left( - \frac{\mathrm{Pr}}{2} \int_0^\eta f \d \eta \right)\d \eta}
19021902
\end{equation}
1903-
This solution is plotted in Fig.~\ref{fig:pohlhausen} (left) for different Prandtl numbers (Pr) and may be compared to the plot in Fig.~B-2 of \cite{Holman:1} for verification.
1903+
This solution is plotted in Fig.~\ref{fig:pohlhausen} (left) for different Prandtl numbers (Pr) and may be compared to the plot in Fig.~B-2 of \cite{Holman:2} for verification.
19041904

19051905
In this test series, the 2-D FDS domain is set 10 m in length and 1 m in height. The simulation is run as a DNS with the viscosity, conductivity, and specific heat set to provide Prandtl numbers of [0.5, 1, 2]. The grid resolution (after a convergence study) is set to $\delta x=\delta z=1.25$ cm. The inlet velocity is set to 1 m/s with an ambient air temperature of $T_\infty=20$ \si{\degreeCelsius}. The wall boundary is set to a fixed temperature of $T_w=21$ \si{\degreeCelsius}. The outflow is set to \ct{OPEN}. The top boundary is homogeneous Neumann for velocity and Dirichlet for temperature at $T_\infty=20$ \si{\degreeCelsius}. The simulation is run to steady state. The resulting temperature profiles $T(z)$ at $x=5$ m are shown in Fig.~\ref{fig:pohlhausen} (right).
19061906

@@ -2075,9 +2075,9 @@ \subsection{Horizontal Enclosure (\texorpdfstring{\ct{natconh}}{natconh})}
20752075

20762076
Consider thermal convection in an enclosure with a hot floor, cold ceiling, and adiabatic walls. Table~\ref{tab:freeconh} lists values for $C$ and $n$, and the length scale, $L$, is taken as the height of the enclosure, $\delta$.
20772077
\begin{table}[h]
2078-
% see table 7.3 in J.P. Holman 7th Ed.
2078+
% see table 7.3 in J.P. Holman 10th Ed.
20792079
\centering
2080-
\caption[Natural convection correlation parameters for a horizontal enclosure]{Natural convection correlation parameters for a horizontal enclosure, $\mathrm{Nu}=C \, \mathrm{Ra}^n$ \cite{Holman:1}.}
2080+
\caption[Natural convection correlation parameters for a horizontal enclosure]{Natural convection correlation parameters for a horizontal enclosure, $\mathrm{Nu}=C \, \mathrm{Ra}^n$ \cite{Holman:2}.}
20812081
\label{tab:freeconh}
20822082
\begin{tabular}{cll}
20832083
Ra & $C$ & $n$ \\
@@ -2109,15 +2109,15 @@ \subsection{Horizontal Enclosure (\texorpdfstring{\ct{natconh}}{natconh})}
21092109
\subsection{Vertical Enclosure (\texorpdfstring{\ct{natconv}}{natconv})}
21102110
\label{sec:natconv}
21112111

2112-
Consider now thermal convection in an enclosure with walls of fixed temperature and insulated floor and ceiling. The Nusselt number correlation requires an additional factor to account for the ratio of the height, $H$, to the distance between the walls $\delta$ \cite{Holman:1}:
2112+
Consider now thermal convection in an enclosure with walls of fixed temperature and insulated floor and ceiling. The Nusselt number correlation requires an additional factor to account for the ratio of the height, $H$, to the distance between the walls $\delta$ \cite{Holman:2}:
21132113
\begin{equation}
21142114
\mathrm{Nu} = C \,\mathrm{Ra}^n \,\left(\frac{H}{\delta}\right)^m
21152115
\end{equation}
21162116
The values of $C$, $n$, and $m$ are given below in Tab.~\ref{tab:freeconv}.
21172117
\begin{table}[h]
2118-
% see table 7.3 in J.P. Holman 7th Ed.
2118+
% see table 7.3 in J.P. Holman 10th Ed.
21192119
\centering
2120-
\caption[Free convection correlation parameters for a vertical enclosure]{Free convection correlation parameters for a vertical enclosure, valid for the ranges Pr=[0.5-2] and $L/\delta$=[11-42] \cite{Holman:1}.}
2120+
\caption[Free convection correlation parameters for a vertical enclosure]{Free convection correlation parameters for a vertical enclosure, valid for the ranges Pr=[0.5-2] and $L/\delta$=[11-42] \cite{Holman:2}.}
21212121
\label{tab:freeconv}
21222122
\begin{tabular}{clll}
21232123
Ra & $C$ & $n$ & $m$ \\
@@ -2148,7 +2148,7 @@ \subsection{Vertical Enclosure (\texorpdfstring{\ct{natconv}}{natconv})}
21482148
\subsection{Sphere (\texorpdfstring{\ct{free_conv_sphere}}{free\_conv\_sphere})}
21492149
\label{sec:free_conv_sphere}
21502150

2151-
Consider a heated sphere in the range $1 < {\rm Ra} < 10^9$. Yuge~\cite{Yuge:1960} and Amato and Tien~\cite{Amato:1972} propose the following Nusselt number correlations for natural convection from a sphere \cite{Holman:1}.
2151+
Consider a heated sphere in the range $1 < {\rm Ra} < 10^9$. Yuge~\cite{Yuge:1960} and Amato and Tien~\cite{Amato:1972} propose the following Nusselt number correlations for natural convection from a sphere \cite{Holman:2}.
21522152
\be
21532153
\mathrm{Nu} = \left\{ \begin{array}{ll} 2 + 0.43 \, \mathrm{Ra}^{1/4} & 1 < \mathrm{Ra} < 10^5 \\
21542154
2 + 0.50 \, \mathrm{Ra}^{1/4} & 3 \times 10^5 < \mathrm{Ra} < 8 \times 10^8 \end{array} \right.

Source/func.f90

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -2045,7 +2045,7 @@ REAL(EB) FUNCTION DRAG(RE,DRAG_LAW,KN)
20452045

20462046
SELECT CASE(DRAG_LAW)
20472047

2048-
! see J.P. Holman 7th Ed. Fig. 6-10
2048+
! see J.P. Holman 10th Ed. Fig. 6-10
20492049
CASE(SPHERE_DRAG)
20502050
IF (RE<1._EB) THEN
20512051
IF (PRESENT(KN)) THEN
@@ -2060,7 +2060,7 @@ REAL(EB) FUNCTION DRAG(RE,DRAG_LAW,KN)
20602060
DRAG = 0.44_EB
20612061
ENDIF
20622062

2063-
! see J.P. Holman 7th Ed. Fig. 6-9
2063+
! see J.P. Holman 10th Ed. Fig. 6-9
20642064
CASE(CYLINDER_DRAG)
20652065
IF (RE<=1._EB) THEN
20662066
DRAG = 10._EB/(RE**0.8_EB)

Source/turb.f90

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -1379,7 +1379,7 @@ SUBROUTINE RAYLEIGH_HEAT_FLUX_MODEL(H,Z_STAR,REGIME,DZ,TMP_W,TMP_G,K_G,RHO_G,CP_
13791379
! Rayleigh number scaling in nondimensional thermal wall units
13801380
!
13811381
! The formulation is based on the discussion of natural convection systems in
1382-
! J.P. Holman, Heat Transfer, 7th Ed., McGraw-Hill, 1990, p. 346.
1382+
! J.P. Holman, Heat Transfer, 10th Ed., McGraw-Hill, 2010, Sec. 7-4.
13831383

13841384
REAL(EB), INTENT(OUT) :: H,Z_STAR
13851385
REAL(EB), INTENT(IN) :: DZ,TMP_W,TMP_G,K_G,RHO_G,CP_G,MU_G,VEL_G
@@ -1487,7 +1487,7 @@ SUBROUTINE RAYLEIGH_MASS_FLUX_MODEL(H_MASS,Z_STAR,DZ,B_NUMBER,D_FILM,RHO_FILM,MU
14871487
! Rayleigh number scaling in nondimensional mass transfer wall units
14881488
!
14891489
! The formulation is based on the discussion of natural convection systems in
1490-
! J.P. Holman, Heat Transfer, 7th Ed., McGraw-Hill, 1990, p. 346.
1490+
! J.P. Holman, Heat Transfer, 10th Ed., McGraw-Hill, 2010, Sec. 7-4.
14911491

14921492
REAL(EB), INTENT(OUT) :: H_MASS,Z_STAR
14931493
REAL(EB), INTENT(IN) :: DZ,B_NUMBER,D_FILM,RHO_FILM,MU_FILM

Source/wall.f90

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -3562,7 +3562,7 @@ REAL(EB) FUNCTION HEAT_TRANSFER_COEFFICIENT(NMX,DELTA_N_TMP,H_FIXED,SFX,WALL_IND
35623562
IF (H_FIXED >= 0._EB) THEN
35633563
HEAT_TRANSFER_COEFFICIENT = H_FIXED
35643564
ELSE
3565-
HEAT_TRANSFER_COEFFICIENT = 1.31_EB*ABS(DELTA_N_TMP)**ONTH ! Natural convection for vertical plane
3565+
HEAT_TRANSFER_COEFFICIENT = 1.31_EB*ABS(DELTA_N_TMP)**ONTH ! Natural convection for vertical plane, Holman, 10th, Tab. 7.2
35663566
ENDIF
35673567
RETURN
35683568
ENDIF

0 commit comments

Comments
 (0)