Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
90 changes: 47 additions & 43 deletions Utilities/Python/fdsplotlib.py
Original file line number Diff line number Diff line change
Expand Up @@ -610,21 +610,23 @@ def _parse_stat_xy_local(m):

flat_meas = np.atleast_1d(v_meas)
flat_pred = np.atleast_1d(v_pred)
nmin = min(flat_meas.size, flat_pred.size)
if nmin == 0:
print(f"[dataplot] Warning: no valid data pairs for {pp.Dataname}")
else:
if flat_meas.size != flat_pred.size:
print(f"[dataplot] Truncated unequal vectors for {pp.Dataname}: "
f"Measured={flat_meas.size}, Predicted={flat_pred.size} → {nmin}")
flat_meas = flat_meas[:nmin]
flat_pred = flat_pred[:nmin]

Save_Measured_Metric[-1] = flat_meas
Save_Predicted_Metric[-1] = flat_pred
if pp.Quantity != "0":
nmin = min(flat_meas.size, flat_pred.size)
if nmin == 0:
print(f"[dataplot] Warning: no valid data pairs for {pp.Dataname}")
else:
if flat_meas.size != flat_pred.size:
print(f"[dataplot] Truncated unequal vectors for {pp.Dataname}: "
f"Measured={flat_meas.size}, Predicted={flat_pred.size} → {nmin}")
flat_meas = flat_meas[:nmin]
flat_pred = flat_pred[:nmin]

qty_label = str(pp.d2_Dep_Col_Name).strip() or "Unknown"
Save_Predicted_Quantity[-1] = np.array([qty_label] * len(flat_pred), dtype=object)
Save_Measured_Metric[-1] = flat_meas
Save_Predicted_Metric[-1] = flat_pred

qty_label = str(pp.d2_Dep_Col_Name).strip() or "Unknown"
Save_Predicted_Quantity[-1] = np.array([qty_label] * len(flat_pred), dtype=object)

plt.figure(f.number)
os.makedirs(pltdir, exist_ok=True)
Expand Down Expand Up @@ -706,21 +708,22 @@ def _parse_stat_xy_local(m):
flat_meas = np.atleast_1d(v_meas)
flat_pred = np.atleast_1d(v_pred)

nmin = min(flat_meas.size, flat_pred.size)
if nmin == 0:
print(f"[dataplot] Warning: no valid data pairs for {pp.Dataname}")
else:
if flat_meas.size != flat_pred.size:
print(f"[dataplot] Truncated unequal vectors for {pp.Dataname}: "
f"Measured={flat_meas.size}, Predicted={flat_pred.size} → {nmin}")
flat_meas = flat_meas[:nmin]
flat_pred = flat_pred[:nmin]
if pp.Quantity != "0":
nmin = min(flat_meas.size, flat_pred.size)
if nmin == 0:
print(f"[dataplot] Warning: no valid data pairs for {pp.Dataname}")
else:
if flat_meas.size != flat_pred.size:
print(f"[dataplot] Truncated unequal vectors for {pp.Dataname}: "
f"Measured={flat_meas.size}, Predicted={flat_pred.size} → {nmin}")
flat_meas = flat_meas[:nmin]
flat_pred = flat_pred[:nmin]

Save_Measured_Metric[-1] = flat_meas
Save_Predicted_Metric[-1] = flat_pred
Save_Measured_Metric[-1] = flat_meas
Save_Predicted_Metric[-1] = flat_pred

qty_label = str(pp.d2_Dep_Col_Name).strip() or "Unknown"
Save_Predicted_Quantity[-1] = np.array([qty_label] * len(flat_pred), dtype=object)
qty_label = str(pp.d2_Dep_Col_Name).strip() or "Unknown"
Save_Predicted_Quantity[-1] = np.array([qty_label] * len(flat_pred), dtype=object)

plt.figure(f.number)
os.makedirs(pltdir, exist_ok=True)
Expand Down Expand Up @@ -805,23 +808,24 @@ def _parse_stat_xy_local(m):
flat_meas = np.concatenate(meas_list) if meas_list else np.array([])
flat_pred = np.concatenate(pred_list) if pred_list else np.array([])

nmin = min(flat_meas.size, flat_pred.size)
if nmin == 0:
print(f"[dataplot] Warning: no valid data pairs for {pp.Dataname}")
else:
if flat_meas.size != flat_pred.size:
print(f"[dataplot] Truncated unequal vectors for {pp.Dataname}: "
f"Measured={flat_meas.size}, Predicted={flat_pred.size} → {nmin}")
# Truncate both sides to maintain one-to-one correspondence
flat_meas = flat_meas[:nmin]
flat_pred = flat_pred[:nmin]

# Save truncated paired arrays
Save_Measured_Metric[-1] = flat_meas
Save_Predicted_Metric[-1] = flat_pred

qty_label = str(pp.d2_Dep_Col_Name).strip() or "Unknown"
Save_Predicted_Quantity[-1] = np.array([qty_label] * len(flat_pred), dtype=object)
if pp.Quantity != "0":
nmin = min(flat_meas.size, flat_pred.size)
if nmin == 0:
print(f"[dataplot] Warning: no valid data pairs for {pp.Dataname}")
else:
if flat_meas.size != flat_pred.size :
print(f"[dataplot] Truncated unequal vectors for {pp.Dataname}: "
f"Measured={flat_meas.size}, Predicted={flat_pred.size} → {nmin}")
# Truncate both sides to maintain one-to-one correspondence
flat_meas = flat_meas[:nmin]
flat_pred = flat_pred[:nmin]

# Save truncated paired arrays
Save_Measured_Metric[-1] = flat_meas
Save_Predicted_Metric[-1] = flat_pred

qty_label = str(pp.d2_Dep_Col_Name).strip() or "Unknown"
Save_Predicted_Quantity[-1] = np.array([qty_label] * len(flat_pred), dtype=object)

except Exception as e:
print(f"[dataplot] Error computing predicted metric for {pp.Dataname}: {e}")
Expand Down