Skip to content

frankhlchi/Inference-Graph-Data-Valuation

Repository files navigation

Graph Inference Data Valuation Framework

Inference_Data_Valuation_Poster_1 This repository contains code of Shapley-Guided Utility Learning for Effective Graph Inference Data Valuation.

Scripts Overview

  1. preprocess.py

    • Preprocesses the graph dataset for GNN training and evaluation.
    • Input: Raw graph data
    • Output: Processed graph data ready for GNN consumption
  2. train_gnn.py

    • Trains the GNN model on the preprocessed data.
    • Input: Processed graph data
    • Output: Trained GNN model
  3. valid_perm_sample.py

    • Generates validation permutation samples for model evaluation.
    • Input: Trained GNN model, validation data
    • Output: Validation permutation samples
  4. test_perm_sample.py

    • Generates test permutation samples for final model evaluation.
    • Input: Trained GNN model, test data
    • Output: Test permutation samples
  5. atc_confidence_estimation.py

    • Estimates confidence using the Adaptive Test Confidence (ATC) method.
    • Input: Validation permutation samples
    • Output: ATC confidence estimates
  6. atc_ne_confidence_estimation.py

    • Estimates confidence using the ATC with Negative Entropy (ATC-NE) method.
    • Input: Validation permutation samples
    • Output: ATC-NE confidence estimates
  7. training_statistics.py

    • Computes and saves training set statistics for use in performance prediction.
    • Input: Trained GNN model, training data
    • Output: Training statistics
  8. doc_performance_prediction.py

    • Predicts model performance using the Difference of Confidence (DOC) method.
    • Input: Training statistics, validation permutation samples
    • Output: DOC performance predictions
  9. shapley_regression_pred_lasso.py

    • Performs Shapley regression prediction using LASSO regularization (our proposed method).
    • Input: Shapley values, performance metrics
    • Output: Regression model for performance prediction
  10. shapley_estimation_drop_node.py

  • Estimates Shapley values for nodes by dropping them from the graph.

About

Code for ICLR 25 paper "Shapley-Guided Utility Learning for Effective Graph Inference Data Valuation".

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages