Skip to content

A tiny, no-external-dependencies, disk-based graph database for Node.js with rich set of operations.

License

Notifications You must be signed in to change notification settings

freakynit/tiny-graph-db

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

8 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

TinyGraphDB

A tiny, no-external-dependencies, disk-based graph database for Node.js with rich query, traversal, batch ops, batch cosine similarity, and semantic filtering.

  • Persist node-&-relation graphs in a JSON file
  • Query, traverse, mutate, and semantically search graphs in JavaScript
  • Cosine similarity search of nodes & edges via vector embeddings for AI/semantic-graph use cases
  • Batch and hierarchical traversals, semantic+traditional queries, and stats
  • Full API for CRUD, batch, similarity, statistics, import/export, and traversal

Table of Contents

Features

  • Persistent storage
    All nodes & edges auto-saved to a JSON file
  • 🔍 Search: name, metadata, ID, relation endpoints, and semantic/meta comparison
  • 🧮 Cosine Similarity queries for embeddings in metadata (nodes or relations)
  • 🔄 Graph Traversal, walk/batch from node, relation, or metadata; supports direction/depth/name filters
  • ⬇️ Batch update/delete by search criteria (see below)
  • 📈 Stats: node count, edge count, average degree
  • 🔄 Import/export: snapshot/restore full graph
  • ⚡ Fast, super lightweight, perfect for graph semantic search, retrieval-augmented generation, etc.

Installation

npm install tiny-graph-db

Quick Start

const TinyGraphDB = require('tiny-graph-db');
const db = new TinyGraphDB();

// Add nodes with embeddings
const nodeA = db.addNode('Paper A', { type: 'paper', embedding: [0.2, 0.1, 0.5] });
const nodeC = db.addNode('Concept X', { type: 'concept', embedding: [0.25, 0.1, 0.55] });
const nodeP = db.addNode('Author', { type: 'person', embedding: [0.9, 0.8, 0.7] });

const rel1 = db.addRelation('mentions', nodeA.id, nodeC.id, { confidence: 0.92 });
const rel2 = db.addRelation('authored_by', nodeA.id, nodeP.id, { confidence: 1.0 });

// Node search by metadata
console.log('All concepts:', db.searchNodes({ metadata: { type: 'concept' } }));

// Cosine similarity search
const qv = [0.2, 0.1, 0.52];
const similar = db.searchNodesByCosineSimilarity(qv, { threshold: 0.99 });
console.log('Semantically closest nodes:', similar);

// Traverse outgoing links from nodeA up to depth 2
const walk = db.traverseFromNode(nodeA.id, { maxDepth: 2, directions: ['outgoing'] });
console.log('Traversal:', walk);

// Batch update: update all "concept" nodes
db.updateBySearch('node', { metadata: { type: 'concept' } }, { metadata: { reviewed: true } });

// Batch delete: remove all relations with low confidence
db.deleteBySearch('relation', { metadata: { confidence: { lt: 0.95 } } });

// Save (usually auto, but explicit call)
db.flushToDisk();

API

Constructor

new TinyGraphDB(filePath?: string)
  • filePath: Path to JSON file (default: './graph_data.json').

Node Operations

Method Description Returns
addNode(name, metadata = {}, flush = true) Create node with name/metadata Node object
getNode(nodeId) Look up node by ID Node or undefined
getAllNodes() Get all nodes Node[]
updateNode(nodeId, {name?, metadata?}) Update name/metadata Updated node
deleteNode(nodeId) Remove node and all its relations Deleted node object
deleteBySearch('node', conditions) Batch delete by search Array of removed

Relation Operations

Method Description Returns
addRelation(name, fromNodeId, toNodeId, metadata = {}, flush = true) Create edge between nodes Relation object
getRelation(relationId) Fetch edge by ID Relation or undefined
getAllRelations() Get all edges Relation[]
updateRelation(relationId, {name?, metadata?}) Update name/metadata Updated relation
deleteRelation(relationId) Remove relation Deleted relation object
deleteBySearch('relation', conditions) Batch delete by search Array of removed

Query & Search

searchNodes(conditions: SearchConditions): Node[]
searchRelations(conditions: SearchConditions): Relation[]

conditions:

  • name: string | RegExp | { contains: string }
  • id, fromNodeId, toNodeId
  • metadata: { [key]: ... } supports:
    • equality, comparison: { eq, ne, gt, gte, lt, lte, contains, startsWith, endsWith, in }
    • cosine similarity: { cosineSimilarity: { queryEmbedding, threshold } }
  • cosineSimilarity (top-level): { queryEmbedding, embeddingKey, threshold }

Cosine Similarity Search

searchNodesByCosineSimilarity(queryEmbedding: number[], options?): Array
searchRelationsByCosineSimilarity(queryEmbedding: number[], options?): Array
cosineSimilarity(vecA: number[], vecB: number[]): number
  • queryEmbedding: Numeric vector
  • Options:
    • embeddingKey: metadata key for vector (default: 'embedding')
    • threshold: similarity threshold (default: 0.5)
    • limit: max results (default: 10)

Example

db.searchNodesByCosineSimilarity([0.1, 0.2, 0.3], { threshold: 0.8, limit: 3 });

Graph Traversal

Method Description Returns
traverseFromNode(startNodeId, options) Walks from a node, following edges (see below) Array of [fromNode, relation, toNode]
traverseFromRelation(startRelationId, maxDepth?) Starts traversal from a relation Same as above
traverseFromMetadata(metadataConditions, maxDepth?) Begins traverse from nodes/relations that match metadata Same as above

Options for traverseFromNode:

  • maxDepth: limit depth (Infinity by default)
  • directions: ['outgoing','incoming']
  • relationName: (optional) filter by relation name

Example

db.traverseFromNode(nodeId, { maxDepth: 2, directions: ['outgoing'] });

Result: Array of [fromNode, relation, toNode] triplets in visit order.

Batch Update / Delete

Update by search

updateBySearch('node' | 'relation', searchConditions, { name?, metadata? }): Array
// Example:
db.updateBySearch('node', { metadata: { genre: 'sci-fi' } }, { name: 'SF Novel' });

Delete by search

deleteBySearch('node' | 'relation', searchConditions): Array
// Example:
db.deleteBySearch('relation', { metadata: { confidence: { lt: 0.9 } } });

GraphRAG & Hierarchical Traversal

Hybrid search and traversal for retrieval-augmented-graph (RAG) and LLM flows

searchAndTraverse(queryEmbedding, options?): Array

Supports:

  • Cosine similarity search + regular filters, for nodes/relations
  • For each initial match, traverses up to N hops, directionally (optionally, end traversal on node only)
  • Returns rich hierarchical JSON

Options:

  • embeddingKey, threshold, limit - see cosine similarity
  • hops: Number of hops to traverse (default: 3)
  • nodeFilters, relationFilters: Additional filters
  • searchNodes, searchRelations: Whether to include nodes, edges, or both
  • directions: e.g., ['outgoing', 'incoming']
  • endOnNode: bool (whether to always finish traversal on nodes)

Example:

const tree = db.searchAndTraverse([0.2, 0.1, 0.5], {
  hops: 2,
  searchNodes: true,
  searchRelations: false,
  nodeFilters: { metadata: { type: 'paper' } },
});
console.log(tree);
// Output: array of hierarchical trees, each rooted on an initial (semantic) hit, with outgoing/incoming relations, connected nodes/edges & so forth

Import / Export

exportData(): { nodes: Node[], relations: Relation[] }
importData(data: { nodes, relations }): void

Export produces the full graph dataset as JSON-serializable data. Import wipes and loads supplied graph, then persists.

Utility

  • getNeighbors(nodeId): All neighbor nodes, with edge and direction
    • Returns: Array of { node, relation, direction }
  • getStats(): { nodeCount, relationCount, avgDegree }
  • flushToDisk(): Explicit save to disk (auto after every mutation unless using flush = false param on add)
  • rebuildNodeRelationsIndex(): Internal; rebuilds edge indices (auto-run after import)

Examples

1. Traditional Search

const book1    = db.addNode('Dune',        { genre: 'sci-fi',   pages: 412, published: 1965 });
const book2    = db.addNode('Foundation',  { genre: 'sci-fi',   pages: 255, published: 1951 });
const author1  = db.addNode('Frank Herbert', { nationality: 'US' });

// Find all US authors:
db.searchNodes({ metadata: { nationality: 'US' } });

// Find all books published pre-1960:
db.searchNodes({ metadata: { published: { lt: 1960 } } });

2. Cosine Similarity Search

const doc = db.addNode('Graph Vector', { embedding: [0.2, 0.4, 0.6] });
// Find similar to [0.2, 0.41, 0.67]:
db.searchNodesByCosineSimilarity([0.2, 0.41, 0.67], { threshold: 0.95 });

3. Traversals

// Walk two hops out from a node
const walk = db.traverseFromNode(doc.id, { maxDepth: 2, directions: ['outgoing'] });

// Start traversal from a relation
const traverseRels = db.traverseFromRelation(rel1.id, 3);

// Traverse from all nodes with type "paper":
db.traverseFromMetadata({ type: 'paper' }, 2);

4. Batch Update & Delete

// Tag all "concept" nodes as reviewed
db.updateBySearch('node', { metadata: { type: 'concept' } }, { metadata: { reviewed: true } });
// Delete all weak relations
db.deleteBySearch('relation', { metadata: { confidence: { lt: 0.8 } } });

5. Hybrid "search and traverse" (GraphRAG pattern)

// Retrieve node (by semantic match) then its 2-hop subgraph
const rag = db.searchAndTraverse([0.25, 0.1, 0.5], { hops: 2 });
console.log(JSON.stringify(rag, null, 2));

6. Utilities

console.log('Stats:', db.getStats());
console.log('Neighbors of nodeA:', db.getNeighbors(nodeA.id));
// Export/import
const json = db.exportData();
db.importData(json);

Performance Benchmarks

Function Time (ms) Ops/sec
getNode() 0.0001 8,473,743
traverseFromNode() 0.0072 138,175
searchNodes() 0.1728 5,787
searchNodesByCosineSimilarity() 0.3456 2,893

Run benchmarks: node src/benchmark.js 1000 2000 5 or npm run benchmark -- 1000 2000 5

Contributing

  1. Fork the repo
  2. Create a branch: git checkout -b feat/my-feature
  3. Commit & push, then open a PR

Please file bugs/requests using GitHub Issues.

License

MIT License (see LICENSE)

Built with ♥ by freakynit

About

A tiny, no-external-dependencies, disk-based graph database for Node.js with rich set of operations.

Resources

License

Stars

Watchers

Forks

Packages

No packages published