Skip to content

running predictions with tensorflow is slow #60

Open
@dagap

Description

@dagap
  • MMSplice version: 2.3.0
  • Python version: 3.9.7
  • Operating System: Ubuntu 20.04.3 LTS

Description

Running mmsplice on a GPU-enabled machine is very slow. I have a NVIDIA RTX A5000 with 24 GB memory and running mmsplice is 10x slower than running on CPU with 10 cores. Has anyone benchmarked the GPU speedups?

I am running the latest drivers and cuda version 11.6. Tensorflow detects the GPU just fine.

What I Did

start_time = time.time()
gtf = 'gtf_file_coding.gtf'
dl = SplicingVCFDataloader(gtf, fasta, vcf)
model = MMSplice()
output_csv = 'preds.csv'
predict_save(model, dl, output_csv, pathogenicity=True, splicing_efficiency=True)  # also used higher batch size
print("Seconds since epoch with GTF =", seconds)
df = pd.read_csv(output_csv)
df = max_varEff(df)
df.to_csv('preds_max.csv')
print('TOTAL EXECUTION TIME ...')
print("--- %s seconds ---" % (time.time() - start_time))

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions