Skip to content

Commit b7c7b93

Browse files
authored
Merge pull request #6088 from Swathi266/patch-13
Update tutorial.md
2 parents e36bb84 + f04369b commit b7c7b93

File tree

1 file changed

+10
-10
lines changed
  • topics/proteomics/tutorials/DIA_Analysis_OSW

1 file changed

+10
-10
lines changed

topics/proteomics/tutorials/DIA_Analysis_OSW/tutorial.md

Lines changed: 10 additions & 10 deletions
Original file line numberDiff line numberDiff line change
@@ -100,7 +100,7 @@ The dataset in this tutorial consists of two different Spike-in mixtures of huma
100100
101101
> <hands-on-title>Converting vendor specific raw to open mzML format</hands-on-title>
102102
>
103-
> 1. {% tool [msconvert](toolshed.g2.bx.psu.edu/repos/galaxyp/msconvert/msconvert/3.0.19052.1) %} with the following parameters:
103+
> 1. {% tool [msconvert Convert and/or filter mass spectrometry files](toolshed.g2.bx.psu.edu/repos/galaxyp/msconvert/msconvert/3.0.20287.6) %}
104104
> - {% icon param-collection %} *"Input unrefined MS data"*: `DIA_data`
105105
> - *"Do you agree to the vendor licenses?"*: `Yes`
106106
> - *"Output Type"*: `mzML`
@@ -126,7 +126,7 @@ The dataset in this tutorial consists of two different Spike-in mixtures of huma
126126
127127
> <hands-on-title>DIA analysis using OpenSwathWorkflow</hands-on-title>
128128
>
129-
> 1. {% tool [OpenSwathWorkflow](toolshed.g2.bx.psu.edu/repos/galaxyp/openms_openswathworkflow/OpenSwathWorkflow/2.6+galaxy0) %} with the following parameters:
129+
> 1. {% tool [OpenSwathWorkflow Complete workflow to run OpenSWATH](toolshed.g2.bx.psu.edu/repos/galaxyp/openms_openswathworkflow/OpenSwathWorkflow/3.1+galaxy0) %}
130130
> - {% icon param-collection %} *"Input files separated by blank"*: `DIA_data` (output of **msconvert** {% icon tool %})
131131
> - {% icon param-file %} *"transition file ('TraML','tsv','pqp')"*: `HEK_Ecoli_lib`
132132
> - {% icon param-file %} *"transition file ('TraML')"*: `iRTassays`
@@ -160,7 +160,7 @@ The dataset in this tutorial consists of two different Spike-in mixtures of huma
160160
161161
> <hands-on-title>Combining the individual osw results with pyprophet merge</hands-on-title>
162162
>
163-
> 1. {% tool [PyProphet merge](toolshed.g2.bx.psu.edu/repos/galaxyp/pyprophet_merge/pyprophet_merge/2.1.4.0) %} with the following parameters:
163+
> 1. {% tool [PyProphet merge Merge multiple osw files](toolshed.g2.bx.psu.edu/repos/galaxyp/pyprophet_merge/pyprophet_merge/2.1.4.0) %}
164164
> - {% icon param-collection %} *"Input file"*: `out_osw` (output of **OpenSwathWorkflow** {% icon tool %})
165165
> - {% icon param-file %} *"Template osw file"*: `HEK_Ecoli_lib`
166166
>
@@ -171,7 +171,7 @@ The dataset in this tutorial consists of two different Spike-in mixtures of huma
171171
172172
> <hands-on-title>Semi-supervised learning and scoring of OpenSwathWorkflow results</hands-on-title>
173173
>
174-
> 1. {% tool [PyProphet score](toolshed.g2.bx.psu.edu/repos/galaxyp/pyprophet_score/pyprophet_score/2.1.4.2) %} with the following parameters:
174+
> 1. {% tool [PyProphet score Error-rate estimation for MS1, MS2 and transition-level data](toolshed.g2.bx.psu.edu/repos/galaxyp/pyprophet_score/pyprophet_score/2.1.4.2) %}
175175
> - {% icon param-file %} *"Input file"*: `merged.osw` (output of **PyProphet merge** {% icon tool %})
176176
> - *"Either a 'LDA' or 'XGBoost' classifier is used for semi-supervised learning"*: `XGBoost`
177177
>
@@ -210,11 +210,11 @@ The dataset in this tutorial consists of two different Spike-in mixtures of huma
210210
211211
> <hands-on-title>Conduct peptide inference in experiment-wide and global context</hands-on-title>
212212
>
213-
> 1. {% tool [PyProphet peptide](toolshed.g2.bx.psu.edu/repos/galaxyp/pyprophet_peptide/pyprophet_peptide/2.1.4.0) %} with the following parameters:
213+
> 1. {% tool [PyProphet peptide Peptide error-rate estimation](toolshed.g2.bx.psu.edu/repos/galaxyp/pyprophet_peptide/pyprophet_peptide/2.1.4.0) %}
214214
> - {% icon param-file %} *"Input file"*: `score.osw` (output of **PyProphet score** {% icon tool %})
215215
> - *"Context to estimate protein-level FDR control"*: `experiment-wide`
216216
>
217-
> 2. {% tool [PyProphet peptide](toolshed.g2.bx.psu.edu/repos/galaxyp/pyprophet_peptide/pyprophet_peptide/2.1.4.0) %} with the following parameters:
217+
> 2. {% tool [PyProphet peptide Peptide error-rate estimation](toolshed.g2.bx.psu.edu/repos/galaxyp/pyprophet_peptide/pyprophet_peptide/2.1.4.0) %}
218218
> - {% icon param-file %} *"Input file"*: `peptide.osw` (output of **PyProphet peptide** {% icon tool %})
219219
> - *"Context to estimate protein-level FDR control"*: `global`
220220
>
@@ -226,11 +226,11 @@ The dataset in this tutorial consists of two different Spike-in mixtures of huma
226226
227227
> <hands-on-title>Conduct protein inference in experiment-wide and global context</hands-on-title>
228228
>
229-
> 1. {% tool [PyProphet protein](toolshed.g2.bx.psu.edu/repos/galaxyp/pyprophet_protein/pyprophet_protein/2.1.4.0) %} with the following parameters:
229+
> 1. {% tool [PyProphet protein Protein error-rate estimation](toolshed.g2.bx.psu.edu/repos/galaxyp/pyprophet_protein/pyprophet_protein/2.1.4.0) %}
230230
> - {% icon param-file %} *"Input file"*: `peptide.osw` (output of the second **PyProphet peptide** {% icon tool %})
231231
> - *"Context to estimate protein-level FDR control"*: `experiment-wide`
232232
>
233-
> 2. {% tool [PyProphet protein](toolshed.g2.bx.psu.edu/repos/galaxyp/pyprophet_protein/pyprophet_protein/2.1.4.0) %} with the following parameters:
233+
> 2. {% tool [PyProphet protein Protein error-rate estimation](toolshed.g2.bx.psu.edu/repos/galaxyp/pyprophet_protein/pyprophet_protein/2.1.4.0) %}
234234
> - {% icon param-file %} *"Input file"*: `protein.osw` (output of **PyProphet protein** {% icon tool %})
235235
> - *"Context to estimate protein-level FDR control"*: `global`
236236
>
@@ -255,7 +255,7 @@ The dataset in this tutorial consists of two different Spike-in mixtures of huma
255255
256256
> <hands-on-title>Exporting pyprophet scored OSW results</hands-on-title>
257257
>
258-
> 1. {% tool [PyProphet export](toolshed.g2.bx.psu.edu/repos/galaxyp/pyprophet_export/pyprophet_export/2.1.4.1) %} with the following parameters:
258+
> 1. {% tool [PyProphet export Export tabular files, optional swath2stats export](toolshed.g2.bx.psu.edu/repos/galaxyp/pyprophet_export/pyprophet_export/2.1.4.1) %}
259259
> - {% icon param-file %} *"Input file"*: `protein.osw` (output of the second **PyProphet protein** {% icon tool %})
260260
> - *"Export format, either matrix, legacy_split, legacy_merged (mProphet/PyProphet) or score_plots format"*: `legacy_merged`
261261
> - *"Use swath2stats to export file for statsics"*: `yes`
@@ -283,7 +283,7 @@ The dataset in this tutorial consists of two different Spike-in mixtures of huma
283283
284284
> <hands-on-title>Analysis of Ecoli Spike-in</hands-on-title>
285285
>
286-
> 1. {% tool [Select lines that match an expression ](Grep1) %} with the following parameters:
286+
> 1. {% tool [Select lines that match an expression ](Grep1) %}
287287
> - {% icon param-file %} *"Select lines from"*: `protein_signal.tabular` (output of **PyProphet export** {% icon tool %})
288288
> - *"that"*: `Matching`
289289
> - *"the pattern"*: `(ECOLI)|(Spike_in)`

0 commit comments

Comments
 (0)