Skip to content

Update tutorial.md #6088

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 3 commits into from
May 20, 2025
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
20 changes: 10 additions & 10 deletions topics/proteomics/tutorials/DIA_Analysis_OSW/tutorial.md
Original file line number Diff line number Diff line change
Expand Up @@ -100,7 +100,7 @@ The dataset in this tutorial consists of two different Spike-in mixtures of huma

> <hands-on-title>Converting vendor specific raw to open mzML format</hands-on-title>
>
> 1. {% tool [msconvert](toolshed.g2.bx.psu.edu/repos/galaxyp/msconvert/msconvert/3.0.19052.1) %} with the following parameters:
> 1. {% tool [msconvert Convert and/or filter mass spectrometry files](toolshed.g2.bx.psu.edu/repos/galaxyp/msconvert/msconvert/3.0.20287.6) %}
> - {% icon param-collection %} *"Input unrefined MS data"*: `DIA_data`
> - *"Do you agree to the vendor licenses?"*: `Yes`
> - *"Output Type"*: `mzML`
Expand All @@ -126,7 +126,7 @@ The dataset in this tutorial consists of two different Spike-in mixtures of huma

> <hands-on-title>DIA analysis using OpenSwathWorkflow</hands-on-title>
>
> 1. {% tool [OpenSwathWorkflow](toolshed.g2.bx.psu.edu/repos/galaxyp/openms_openswathworkflow/OpenSwathWorkflow/2.6+galaxy0) %} with the following parameters:
> 1. {% tool [OpenSwathWorkflow Complete workflow to run OpenSWATH](toolshed.g2.bx.psu.edu/repos/galaxyp/openms_openswathworkflow/OpenSwathWorkflow/3.1+galaxy0) %}
> - {% icon param-collection %} *"Input files separated by blank"*: `DIA_data` (output of **msconvert** {% icon tool %})
> - {% icon param-file %} *"transition file ('TraML','tsv','pqp')"*: `HEK_Ecoli_lib`
> - {% icon param-file %} *"transition file ('TraML')"*: `iRTassays`
Expand Down Expand Up @@ -160,7 +160,7 @@ The dataset in this tutorial consists of two different Spike-in mixtures of huma

> <hands-on-title>Combining the individual osw results with pyprophet merge</hands-on-title>
>
> 1. {% tool [PyProphet merge](toolshed.g2.bx.psu.edu/repos/galaxyp/pyprophet_merge/pyprophet_merge/2.1.4.0) %} with the following parameters:
> 1. {% tool [PyProphet merge Merge multiple osw files](toolshed.g2.bx.psu.edu/repos/galaxyp/pyprophet_merge/pyprophet_merge/2.1.4.0) %}
> - {% icon param-collection %} *"Input file"*: `out_osw` (output of **OpenSwathWorkflow** {% icon tool %})
> - {% icon param-file %} *"Template osw file"*: `HEK_Ecoli_lib`
>
Expand All @@ -171,7 +171,7 @@ The dataset in this tutorial consists of two different Spike-in mixtures of huma

> <hands-on-title>Semi-supervised learning and scoring of OpenSwathWorkflow results</hands-on-title>
>
> 1. {% tool [PyProphet score](toolshed.g2.bx.psu.edu/repos/galaxyp/pyprophet_score/pyprophet_score/2.1.4.2) %} with the following parameters:
> 1. {% tool [PyProphet score Error-rate estimation for MS1, MS2 and transition-level data](toolshed.g2.bx.psu.edu/repos/galaxyp/pyprophet_score/pyprophet_score/2.1.4.2) %}
> - {% icon param-file %} *"Input file"*: `merged.osw` (output of **PyProphet merge** {% icon tool %})
> - *"Either a 'LDA' or 'XGBoost' classifier is used for semi-supervised learning"*: `XGBoost`
>
Expand Down Expand Up @@ -210,11 +210,11 @@ The dataset in this tutorial consists of two different Spike-in mixtures of huma

> <hands-on-title>Conduct peptide inference in experiment-wide and global context</hands-on-title>
>
> 1. {% tool [PyProphet peptide](toolshed.g2.bx.psu.edu/repos/galaxyp/pyprophet_peptide/pyprophet_peptide/2.1.4.0) %} with the following parameters:
> 1. {% tool [PyProphet peptide Peptide error-rate estimation](toolshed.g2.bx.psu.edu/repos/galaxyp/pyprophet_peptide/pyprophet_peptide/2.1.4.0) %}
> - {% icon param-file %} *"Input file"*: `score.osw` (output of **PyProphet score** {% icon tool %})
> - *"Context to estimate protein-level FDR control"*: `experiment-wide`
>
> 2. {% tool [PyProphet peptide](toolshed.g2.bx.psu.edu/repos/galaxyp/pyprophet_peptide/pyprophet_peptide/2.1.4.0) %} with the following parameters:
> 2. {% tool [PyProphet peptide Peptide error-rate estimation](toolshed.g2.bx.psu.edu/repos/galaxyp/pyprophet_peptide/pyprophet_peptide/2.1.4.0) %}
> - {% icon param-file %} *"Input file"*: `peptide.osw` (output of **PyProphet peptide** {% icon tool %})
> - *"Context to estimate protein-level FDR control"*: `global`
>
Expand All @@ -226,11 +226,11 @@ The dataset in this tutorial consists of two different Spike-in mixtures of huma

> <hands-on-title>Conduct protein inference in experiment-wide and global context</hands-on-title>
>
> 1. {% tool [PyProphet protein](toolshed.g2.bx.psu.edu/repos/galaxyp/pyprophet_protein/pyprophet_protein/2.1.4.0) %} with the following parameters:
> 1. {% tool [PyProphet protein Protein error-rate estimation](toolshed.g2.bx.psu.edu/repos/galaxyp/pyprophet_protein/pyprophet_protein/2.1.4.0) %}
> - {% icon param-file %} *"Input file"*: `peptide.osw` (output of the second **PyProphet peptide** {% icon tool %})
> - *"Context to estimate protein-level FDR control"*: `experiment-wide`
>
> 2. {% tool [PyProphet protein](toolshed.g2.bx.psu.edu/repos/galaxyp/pyprophet_protein/pyprophet_protein/2.1.4.0) %} with the following parameters:
> 2. {% tool [PyProphet protein Protein error-rate estimation](toolshed.g2.bx.psu.edu/repos/galaxyp/pyprophet_protein/pyprophet_protein/2.1.4.0) %}
> - {% icon param-file %} *"Input file"*: `protein.osw` (output of **PyProphet protein** {% icon tool %})
> - *"Context to estimate protein-level FDR control"*: `global`
>
Expand All @@ -255,7 +255,7 @@ The dataset in this tutorial consists of two different Spike-in mixtures of huma

> <hands-on-title>Exporting pyprophet scored OSW results</hands-on-title>
>
> 1. {% tool [PyProphet export](toolshed.g2.bx.psu.edu/repos/galaxyp/pyprophet_export/pyprophet_export/2.1.4.1) %} with the following parameters:
> 1. {% tool [PyProphet export Export tabular files, optional swath2stats export](toolshed.g2.bx.psu.edu/repos/galaxyp/pyprophet_export/pyprophet_export/2.1.4.1) %}
> - {% icon param-file %} *"Input file"*: `protein.osw` (output of the second **PyProphet protein** {% icon tool %})
> - *"Export format, either matrix, legacy_split, legacy_merged (mProphet/PyProphet) or score_plots format"*: `legacy_merged`
> - *"Use swath2stats to export file for statsics"*: `yes`
Expand Down Expand Up @@ -283,7 +283,7 @@ The dataset in this tutorial consists of two different Spike-in mixtures of huma

> <hands-on-title>Analysis of Ecoli Spike-in</hands-on-title>
>
> 1. {% tool [Select lines that match an expression ](Grep1) %} with the following parameters:
> 1. {% tool [Select lines that match an expression ](Grep1) %}
> - {% icon param-file %} *"Select lines from"*: `protein_signal.tabular` (output of **PyProphet export** {% icon tool %})
> - *"that"*: `Matching`
> - *"the pattern"*: `(ECOLI)|(Spike_in)`
Expand Down