A comprehensive Rust library and command-line interface for interacting with the Dataverse API. Build robust data repository workflows with type-safe, asynchronous operations.
Note: This project is under active development. While core functionality is stable, the API may evolve before the 1.0 release.
- 🚀 High Performance - Built with async/await using Tokio and Reqwest for efficient concurrent operations
- 🔒 Type Safety - Leverage Rust's type system to catch errors at compile time
- ⚡ Direct Upload - Parallel batch uploads for fast file transfers to S3-compatible storage
- 🎯 Dual Interface - Use as a library in your Rust projects or as a standalone CLI tool
- 🔐 Secure Authentication - Multiple auth methods including system keyring integration for credential storage
- 📦 Flexible Configuration - JSON and YAML support for all configuration files
- 📚 Collections - Create, publish, and manage Dataverse collections with hierarchical organization support
- 📊 Datasets - Full dataset lifecycle management including creation, metadata editing, versioning, publishing, linking, and deletion. Support for dataset locks and review workflows
- 📁 Files - Upload files via standard or direct upload (with parallel batch support), replace existing files, download files and complete datasets, and manage file metadata
- 🔍 Search - Query datasets and files across your Dataverse instance with flexible search parameters
- 🛠️ Administration - Manage storage drivers, configure external tools, and perform administrative operations
- ℹ️ Instance Information - Retrieve version information and available metadata exporters from your Dataverse instance
Install the command-line tool directly from the repository:
cargo install --git https://github.com/JR-1991/rust-dataverse.git
Add to your Cargo.toml
:
[dependencies]
dataverse = { git = "https://github.com/JR-1991/rust-dataverse" }
Note: Not yet published on crates.io. Pre-1.0 releases will be available soon.
The library provides an async API built on tokio
and reqwest
. Import the prelude for common types:
use dataverse::prelude::*;
#[tokio::main]
async fn main() -> Result<(), Box<dyn std::error::Error>> {
// Initialize client
let client = BaseClient::new(
"https://demo.dataverse.org",
Some("your-api-token")
)?;
// Get instance version
let version = info::get_version(&client).await?;
println!("Dataverse version: {}", version.data.unwrap());
// Create a dataset
let dataset_body = dataset::create::DatasetCreateBody {
// ... configure metadata
..Default::default()
};
let response = dataset::create_dataset(&client, "root", dataset_body).await?;
// Upload a file
let file = UploadFile::from("path/to/file.csv");
let identifier = Identifier::PersistentId("doi:10.5072/FK2/ABCDEF".to_string());
dataset::upload_file_to_dataset(&client, identifier, file, None, None).await?;
Ok(())
}
Key Library Modules:
dataverse::client::BaseClient
- HTTP client for API interactionsdataverse::native_api::collection
- Collection operationsdataverse::native_api::dataset
- Dataset operationsdataverse::native_api::file
- File operationsdataverse::native_api::admin
- Administrative operationsdataverse::search_api
- Search functionalitydataverse::direct_upload
- Direct upload with parallel batch supportdataverse::data_access
- File and dataset downloads
The CLI provides three flexible authentication methods:
Store credentials securely in your system keyring:
# Create a profile
dvcli auth set --name production --url https://dataverse.org --token your-api-token
# Use the profile
dvcli --profile production info version
Set environment variables for automatic authentication:
export DVCLI_URL="https://demo.dataverse.org"
export DVCLI_TOKEN="your-api-token"
dvcli dataset meta doi:10.5072/FK2/ABC123
If neither profile nor environment variables are set, the CLI will prompt for credentials:
dvcli info version
# Prompts for URL and token
Common CLI Operations:
Note: Configuration files can be provided in both JSON and YAML formats.
# Get help
dvcli --help
dvcli dataset --help
# Collections
dvcli collection create --parent root --body collection.json
dvcli collection publish my-collection
# Datasets
dvcli dataset create --collection root --body dataset.json # or dataset.yaml
dvcli dataset upload --id doi:10.5072/FK2/ABC123 data.csv
dvcli dataset publish doi:10.5072/FK2/ABC123
# Direct upload (faster for large files)
dvcli dataset direct-upload --id doi:10.5072/FK2/ABC123 --parallel 5 file1.csv file2.csv
# Files
dvcli file replace --id 12345 --path new-file.csv
dvcli file download file-pid.txt --path ./downloads/
# Search
dvcli search -q "climate change" -t dataset -t file
# Admin
dvcli admin storage-drivers
dvcli admin add-external-tool tool-manifest.json
Complete workflow examples are available in the examples/
directory:
- create-upload-publish - End-to-end workflow demonstrating collection and dataset creation, file upload, and publishing using shell scripts and the CLI.
Besides these examples, you can also find some recipes in the Dataverse Recipes repository, which cover most of the functionality of the CLI.
Tests require a running Dataverse instance. We provide a convenient test script that handles infrastructure setup:
# Run all tests (starts Docker containers automatically)
./run-tests.sh
# Run a specific test
./run-tests.sh test_create_dataset
The script automatically:
- Starts Dataverse with PostgreSQL and Solr via Docker Compose
- Waits for services to be ready
- Configures environment variables
- Executes the test suite
Docker containers remain running after tests complete for faster subsequent runs. View logs with docker logs dataverse
if you encounter issues.
For granular control during development:
# Start infrastructure
docker compose -f ./docker/docker-compose-base.yml --env-file local-test.env up -d
# Configure environment
export BASE_URL=http://localhost:8080
export DV_VERSION=6.2
export $(grep "API_TOKEN" "dv/bootstrap.exposed.env")
export API_TOKEN_SUPERUSER=$API_TOKEN
# Run tests
cargo test
cargo test -- --nocapture # with output
cargo test test_name # specific test
cargo test collection:: # module tests
Contributions are welcome! Whether you're fixing bugs, adding features, or improving documentation, your help is appreciated. Please feel free to open issues or submit pull requests on GitHub.
Join the conversation on the Dataverse Zulip Channel! Connect with other developers, get help, share ideas, and discuss the future of Rust clients for Dataverse.
This project is licensed under the MIT License - see the License.md file for details.