Create a workflow to run benchmarks #128
Workflow file for this run
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| name: Benchmarks | |
| on: | |
| pull_request: | |
| branches: | |
| - main | |
| workflow_dispatch: | |
| inputs: | |
| halt-for-connection: | |
| description: 'Should this workflow run wait for a remote connection?' | |
| type: choice | |
| required: true | |
| default: 'no' | |
| options: | |
| - 'yes' | |
| - 'no' | |
| jobs: | |
| build-xla-gpu-and-test: | |
| runs-on: linux-x86-g2-48-l4-4gpu # Use a GPU-enabled runner | |
| container: | |
| image: "gcr.io/tensorflow-testing/nosla-cuda12.3-cudnn9.1-ubuntu20.04-manylinux2014-multipython:latest" | |
| options: --gpus all --privileged # Might need privileged mode, use with caution | |
| steps: | |
| - name: Checkout XLA | |
| uses: actions/checkout@v3 | |
| with: | |
| repository: openxla/xla # Replace with your fork if needed | |
| path: xla | |
| # - name: Checkout repository | |
| # uses: actions/checkout@v3 | |
| # with: | |
| # repository: juliagmt-google/xla | |
| # path: xla | |
| # - name: Wait For Connection | |
| # uses: google-ml-infra/actions/ci_connection@main | |
| # with: | |
| # halt-dispatch-input: ${{ inputs.halt-for-connection }} | |
| - name: Print machine specs | |
| run: | | |
| lscpu | |
| free -h # Memory information | |
| df -h # Disk space information | |
| uname -a # Kernel information | |
| - name: Create results directory | |
| working-directory: xla | |
| run: mkdir results | |
| - name: Set up Python 3.10 # Choose your desired Python version | |
| uses: actions/setup-python@v4 | |
| with: | |
| python-version: '3.10' | |
| - name: Create and activate virtual environment | |
| shell: bash # Force the use of bash | |
| run: | | |
| python -m venv xla/venv | |
| source xla/venv/bin/activate | |
| - name: Run setup.sh for E2E benchmarks flax_2b (within venv) | |
| working-directory: xla/xla/backends/cpu/benchmarks/e2e/gemma2/flax_2b | |
| run: | | |
| bash setup.sh | |
| - name: Run run.sh for E2E benchmarks flax_2b (within venv) | |
| working-directory: xla/xla/backends/cpu/benchmarks/e2e/gemma2/flax_2b | |
| timeout-minutes: 30 | |
| shell: bash | |
| run: | | |
| output=$(bash run.sh) | |
| echo "$output" | |
| # Extract metrics using Python and regex | |
| python - << EOF | |
| import re | |
| import json | |
| text = \"\"\"${output}\"\"\" | |
| ttft_pattern = r"TTFT: ([\d.]+) ms ± ([\d.]+)%" | |
| e2e_latency_pattern = r"E2E Latency: ([\d.]+) ms ± ([\d.]+)%" | |
| tpot_pattern = r"TPOT: ([\d.]+) ms" | |
| ttft_match = re.search(ttft_pattern, text) | |
| e2e_latency_match = re.search(e2e_latency_pattern, text) | |
| tpot_match = re.search(tpot_pattern, text) | |
| metrics = { | |
| "TTFT": {"value": ttft_match.group(1) if ttft_match else None, "std_dev": ttft_match.group(2) if ttft_match else None}, | |
| "E2E Latency": {"value": e2e_latency_match.group(1) if e2e_latency_match else None, "std_dev": e2e_latency_match.group(2) if e2e_latency_match else None}, | |
| "TPOT": {"value": tpot_match.group(1) if tpot_match else None}, | |
| } | |
| with open("metrics.json", "w") as f: | |
| json.dump(metrics, f, indent=4) | |
| print(f"::set-output name=metrics::{json.dumps(metrics)}") | |
| EOF | |
| # Copy the metrics.json file to the results directory | |
| cp metrics.json xla/results/ | |
| - name: Wait For Connection | |
| uses: google-ml-infra/actions/ci_connection@main | |
| with: | |
| halt-dispatch-input: ${{ inputs.halt-for-connection }} | |
| # - name: Get GPU spec | |
| # working-directory: xla | |
| # continue-on-error: true | |
| # run: nvidia-smi | |
| # - name: Configure XLA | |
| # working-directory: xla | |
| # run: ./configure.py --backend CUDA --nccl | |
| # - name: Set TF_CPP_MAX_VLOG_LEVEL | |
| # working-directory: xla | |
| # run: echo "TF_CPP_MAX_VLOG_LEVEL=1" >> $GITHUB_ENV # Use GITHUB_ENV to persist across steps | |
| # - name: Check TF_CPP_MAX_VLOG_LEVEL | |
| # working-directory: xla | |
| # run: echo "$TF_CPP_MAX_VLOG_LEVEL" | |
| # - name: Build hlo_runner_main | |
| # working-directory: xla | |
| # run: bazel build -c opt --config=cuda --dynamic_mode=off //xla/tools/multihost_hlo_runner:hlo_runner_main | |
| # - name: Wait For Connection | |
| # uses: google-ml-infra/actions/ci_connection@main | |
| # with: | |
| # halt-dispatch-input: ${{ inputs.halt-for-connection }} | |
| # - name: Create gpu_hlo_backend.hlo | |
| # working-directory: xla | |
| # run: | | |
| # cat << EOF > gpu_hlo_backend.hlo | |
| # HloModule module | |
| # // CHECK: is_scheduled=true | |
| # ENTRY computation { | |
| # p = f32[5000,6000]{1,0} parameter(0) | |
| # e = f32[5000,6000]{1,0} sqrt(p) | |
| # c = f32[6000,5000] transpose(p), dimensions={1,0} | |
| # r = f32[300,20,5000] reshape(c) | |
| # ROOT out = (f32[5000,6000], f32[300,20,5000]) tuple(e,r) | |
| # } | |
| # EOF | |
| # - name: Wait For Connection | |
| # uses: google-ml-infra/actions/ci_connection@main | |
| # with: | |
| # halt-dispatch-input: ${{ inputs.halt-for-connection }} | |
| # - name: Run an HLO file | |
| # working-directory: xla | |
| # run: | | |
| # ./bazel-bin/xla/tools/multihost_hlo_runner/hlo_runner_main --device_type=gpu --log_output=True --use_spmd_partitioning gpu_hlo_backend.hlo &> results/gpu_hlo_backend.log | |
| # - name: Wait For Connection | |
| # uses: google-ml-infra/actions/ci_connection@main | |
| # with: | |
| # halt-dispatch-input: ${{ inputs.halt-for-connection }} | |
| # - name: Download parse_xla_logs.py | |
| # working-directory: xla | |
| # run: wget https://raw.githubusercontent.com/juliagmt-google/xla/main/.github/workflows/parse_xla_logs.py | |
| # - name: Parse XLA logs | |
| # working-directory: xla | |
| # run: python parse_xla_logs.py results/gpu_hlo_backend.log | |
| - name: Upload Results | |
| uses: actions/upload-artifact@v4 | |
| with: | |
| name: gpu-xla-benchmarks | |
| path: xla/results | |
| # # jax-build-and-test: | |
| # # runs-on: linux-x86-g2-48-l4-4gpu # Use a GPU-enabled runner | |
| # # container: | |
| # # image: "gcr.io/tensorflow-testing/nosla-cuda12.3-cudnn9.1-ubuntu20.04-manylinux2014-multipython:latest" | |
| # # env: | |
| # # JAXCI_HERMETIC_PYTHON_VERSION: 3.11 | |
| # # steps: | |
| # # - name: Checkout JAX Fork | |
| # # uses: actions/checkout@v3 | |
| # # with: | |
| # # repository: 'google-ml-infra/jax-fork' | |
| # # path: jax-fork | |
| # # - name: Install JAX Dependencies | |
| # # working-directory: jax-fork | |
| # # run: | | |
| # # python -m pip install --upgrade pip | |
| # # pip install pytest | |
| # # pip install absl-py | |
| # # pip install "jax[cuda12_pip]" # Adjust CUDA version if needed | |
| # # pip install google-benchmark | |
| # # - name: Run JAX Multiprocess GPU Test | |
| # # working-directory: jax-fork | |
| # # continue-on-error: true | |
| # # run: python -m pytest tests/multiprocess_gpu_test.py | |
| # # - name: Run HLO Module Benchmarks withg GPU in xla/tests/fuzz | |
| # # working-directory: xla | |
| # # continue-on-error: true | |
| # # run: | | |
| # # for file in xla/tests/fuzz/*.hlo; do | |
| # # filename=$(basename "$file") | |
| # # # Skip expected failed hlo files. | |
| # # if [[ "$filename" == "rand_000060.hlo" || "$filename" == "rand_000067.hlo" || "$filename" == "rand_000072.hlo" ]]; then | |
| # # echo "Skipping benchmark on $file" | |
| # # continue | |
| # # fi | |
| # # echo "Running benchmark on $file" &> results/"$filename".log | |
| # # ./bazel-bin/xla/tools/multihost_hlo_runner/hlo_runner_main --device_type=gpu --use_spmd_partitioning "$file" &> results/"$filename".log | |
| # # done | |
| # # - name: Upload Results | |
| # # uses: actions/upload-artifact@v4 | |
| # # with: | |
| # # name: gpu-xla-benchmarks | |
| # # path: xla/results |