Skip to content

google-research/timesfm

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

TimesFM

TimesFM (Time Series Foundation Model) is a pretrained time-series foundation model developed by Google Research for time-series forecasting.

This open version is not an officially supported Google product.

Latest Model Version: TimesFM 2.5

Archived Model Versions:

  • 1.0 and 2.0: relevant code archived in the sub directory v1. You can pip install timesfm==1.3.0 to install an older version of this package to load them.

Update - Oct. 29, 2025

Added back the covariate support through XReg for TimesFM 2.5.

Update - Sept. 15, 2025

TimesFM 2.5 is out!

Comparing to TimesFM 2.0, this new 2.5 model:

  • uses 200M parameters, down from 500M.
  • supports up to 16k context length, up from 2048.
  • supports continuous quantile forecast up to 1k horizon via an optional 30M quantile head.
  • gets rid of the frequency indicator.
  • has a couple of new forecasting flags.

Along with the model upgrade we have also upgraded the inference API. This repo will be under construction over the next few weeks to

  1. add support for an upcoming Flax version of the model (faster inference).
  2. add back covariate support.
  3. populate more docstrings, docs and notebook.

Install

  1. Clone the repository:

    git clone https://github.com/google-research/timesfm.git
    cd timesfm
  2. Create a virtual environment and install dependencies using uv:

    # Create a virtual environment
    uv venv
    
    # Activate the environment
    source .venv/bin/activate
    
    # Install the package in editable mode with torch
    uv pip install -e .[torch]
    # Or with flax
    uv pip install -e .[flax]
    # Or XReg is needed
    uv pip install -e .[xreg]
  3. [Optional] Install your preferred torch / jax backend based on your OS and accelerators (CPU, GPU, TPU or Apple Silicon).:

Code Example

import torch
import numpy as np
import timesfm

torch.set_float32_matmul_precision("high")

model = timesfm.TimesFM_2p5_200M_torch.from_pretrained("google/timesfm-2.5-200m-pytorch")

model.compile(
    timesfm.ForecastConfig(
        max_context=1024,
        max_horizon=256,
        normalize_inputs=True,
        use_continuous_quantile_head=True,
        force_flip_invariance=True,
        infer_is_positive=True,
        fix_quantile_crossing=True,
    )
)
point_forecast, quantile_forecast = model.forecast(
    horizon=12,
    inputs=[
        np.linspace(0, 1, 100),
        np.sin(np.linspace(0, 20, 67)),
    ],  # Two dummy inputs
)
point_forecast.shape  # (2, 12)
quantile_forecast.shape  # (2, 12, 10): mean, then 10th to 90th quantiles.

About

TimesFM (Time Series Foundation Model) is a pretrained time-series foundation model developed by Google Research for time-series forecasting.

Resources

License

Stars

Watchers

Forks

Packages

No packages published