Everything in this repository stems from the Machine Learning A-Z course taught by Kirll Eremenko.
- Data Preprocessing
- Simple and Multiple Linear Regressions
- Polynomial Regressions
- Support Vector Regressions (SVR)
- Decision Tree Regressions
- Random Forest Regressions
- Evaluating Regression Performance
- Logistic Regressions
- K-Nearest Neighbors (k-NN)
- Support Vector Machine (SVM)
- Kernel-SVM
- Naive Bayes
- Decision Tree Classification
- Random Forest Classification
- Evaluating Classification Model Performances
- K-Means Clustering
- Hierarchal Clustering
- Apriori
- Eclat
- Upper Confidence Bound (UCB)
- Thompson Sampling
- Natural Language Processing Algorithms
- Artificial Neural Networks
- Convolutional Neural Networks
- Principal Component Analysis (PCA)
- Linear Discriminant Analysis (LDA)
- Kernel PCA
- Model Selection
- XGBoost