This repository provides an industry-standard project structure for data analytics.
It is designed to help analysts start projects quickly, stay organized, and collaborate effectively.
- Project Objective
- Project Files
- Tools and Technologies
- Setup & Installation
- Project Workflow
- Analysis Summary & Key Insights
- Project Structure
- Contributing
- License
- Author
data_analytics_project_template/
│
├─ data/ # Data storage
│ ├─ final/ # Final datasets (ready for reporting/ML models)
│ ├─ interim/ # Intermediate processed files
│ └─ raw/ # Raw untouched datasets
│
├─ logs/ # Logging outputs (script runs, ETL jobs, errors)
│
├─ notebooks/ # Jupyter notebooks (exploration, EDA, visualization)
│
├─ reports/ # Deliverables for stakeholders
│ ├─ dashboards/ # Power BI/Tableau/Looker dashboards
│ ├─ figures/ # Saved plots, charts, images
│ └─ summary_reports/ # Business-style reports (PDF/Word/Markdown)
│
├─ scripts/ # Reusable Python scripts
│
├─ sql_scripts/ # All reusable SQL queries
│
├─ .gitignore # Ignore data, logs, venv, credentials
├─ LICENCE # Open-source license
├─ README.md # Project overview + instructions
└─ requirements.txt # Python dependenciesContributions are welcome! Please fork the repository and submit a pull request.
This project is licensed under the MIT License.
Hi, I'm Hemant, a data enthusiast passionate about turning raw data into meaningful business insights.
Let’s connect:
- LinkedIn : LinkedIn Profile
- Email : [email protected]