Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
6 changes: 4 additions & 2 deletions src/cedalion/imagereco/forward_model.py
Original file line number Diff line number Diff line change
Expand Up @@ -627,6 +627,7 @@ def __init__(
assert head_model.crs == geo3d.points.crs

self.head_model = head_model
self.measurement_list = measurement_list

self.optode_pos = geo3d[
geo3d.type.isin([cdc.PointType.SOURCE, cdc.PointType.DETECTOR])
Expand All @@ -645,9 +646,10 @@ def __init__(

self.optode_pos = self.optode_pos.pint.dequantify()
self.optode_dir = self.optode_dir.pint.dequantify()

self.tissue_properties = get_tissue_properties(
self.head_model.segmentation_masks
self.head_model.segmentation_masks,
self.measurement_list.wavelength.unique()
)

self.volume = self.head_model.segmentation_masks.sum("segmentation_type")
Expand Down
39 changes: 20 additions & 19 deletions src/cedalion/imagereco/tissue_properties.py
Original file line number Diff line number Diff line change
Expand Up @@ -82,26 +82,27 @@ class TissueType(Enum):
# FIXME allow for wavelength dependencies


def get_tissue_properties(segmentation_masks: xr.DataArray) -> np.ndarray:
def get_tissue_properties(segmentation_masks: xr.DataArray, wavelengths: list) -> np.ndarray:
"""Return tissue properties for the given segmentation mask."""
ntissues = segmentation_masks.sizes["segmentation_type"] + 1
tissue_props = np.zeros((ntissues, 4))
tissue_props[0, :] = [0.0, 0.0, 1.0, 1.0] # background

for st in segmentation_masks.segmentation_type.values:
m = segmentation_masks.sel(segmentation_type=st).values
int_labels = np.unique(m[m > 0])
if len(int_labels) == 0:
warn("Segmentation type %s is empty." % st)
continue
int_label = int_labels.item()

if (tissue_type := TISSUE_LABELS.get(st, None)) is None:
raise ValueError(f"unknown tissue type '{st}'")

tissue_props[int_label, 0] = TISSUE_PROPS_ABSORPTION[tissue_type]
tissue_props[int_label, 1] = TISSUE_PROPS_SCATTERING[tissue_type]
tissue_props[int_label, 2] = TISSUE_PROPS_ANISOTROPY[tissue_type]
tissue_props[int_label, 3] = TISSUE_PROPS_REFRACTION[tissue_type]
n_wavelength = len(wavelengths)
tissue_props = np.zeros((ntissues, 4, n_wavelength)) #FIXME add dimension for multiple wavelengths
for i_wl in range(n_wavelength):
tissue_props[0, :,i_wl] = [0.0, 0.0, 1.0, 1.0] # background

for st in segmentation_masks.segmentation_type.values:
m = segmentation_masks.sel(segmentation_type=st).values
int_label = np.unique(m[m > 0]).item()

if (tissue_type := TISSUE_LABELS.get(st, None)) is None:
raise ValueError(f"unknown tissue type '{st}'")

#FIXME made it so the same properties were assigned to each wavelength
tissue_props[int_label, 0, i_wl] = TISSUE_PROPS_ABSORPTION[tissue_type]
tissue_props[int_label, 1, i_wl] = TISSUE_PROPS_SCATTERING[tissue_type]
tissue_props[int_label, 2, i_wl] = TISSUE_PROPS_ANISOTROPY[tissue_type]
tissue_props[int_label, 3, i_wl] = TISSUE_PROPS_REFRACTION[tissue_type]

return tissue_props

Loading