Skip to content

Add inference script #10

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 1 commit into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
12 changes: 12 additions & 0 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -206,6 +206,18 @@ HRNet-W32 student FPD model

- mpii_hourglass_8_256_fpd_hg_4_128_pretrained: hourglass_student_FPD model training resutls.

#### 3.3 Inference on video

```bash
cd tools
# pose_hrnet_w32_student_FPD model
python inference.py --cfg ../experiments/coco/hrnet/w32_256x192_adam_lr1e-3.yaml \
--videoFile ../../multi_people.mp4 \
--inferenceFps 10 --writeBoxFrames \
--outputDir output TEST.MODEL_FILE ../models/student_FPD/pose_hrnet_w32_student_FPD.pth

# hourglass_student_FPD.pth : missing network definition
```

### Citation

Expand Down
341 changes: 341 additions & 0 deletions tools/inference.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,341 @@
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import argparse
import csv
import os
import shutil

from PIL import Image
import torch
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.optim
import torch.utils.data
import torch.utils.data.distributed
import torchvision.transforms as transforms
import torchvision
import cv2
import numpy as np

import sys
sys.path.append("../lib")
import time

# import _init_paths
import models
from config import cfg
from config import update_config
from core.inference import get_final_preds
from utils.transforms import get_affine_transform

CTX = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')


COCO_KEYPOINT_INDEXES = {
0: 'nose',
1: 'left_eye',
2: 'right_eye',
3: 'left_ear',
4: 'right_ear',
5: 'left_shoulder',
6: 'right_shoulder',
7: 'left_elbow',
8: 'right_elbow',
9: 'left_wrist',
10: 'right_wrist',
11: 'left_hip',
12: 'right_hip',
13: 'left_knee',
14: 'right_knee',
15: 'left_ankle',
16: 'right_ankle'
}

COCO_INSTANCE_CATEGORY_NAMES = [
'__background__', 'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus',
'train', 'truck', 'boat', 'traffic light', 'fire hydrant', 'N/A', 'stop sign',
'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow',
'elephant', 'bear', 'zebra', 'giraffe', 'N/A', 'backpack', 'umbrella', 'N/A', 'N/A',
'handbag', 'tie', 'suitcase', 'frisbee', 'skis', 'snowboard', 'sports ball',
'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard', 'tennis racket',
'bottle', 'N/A', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl',
'banana', 'apple', 'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza',
'donut', 'cake', 'chair', 'couch', 'potted plant', 'bed', 'N/A', 'dining table',
'N/A', 'N/A', 'toilet', 'N/A', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone',
'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'N/A', 'book',
'clock', 'vase', 'scissors', 'teddy bear', 'hair drier', 'toothbrush'
]


def get_person_detection_boxes(model, img, threshold=0.5):
pil_image = Image.fromarray(img) # Load the image
transform = transforms.Compose([transforms.ToTensor()]) # Defing PyTorch Transform
transformed_img = transform(pil_image) # Apply the transform to the image
pred = model([transformed_img.to(CTX)]) # Pass the image to the model
# Use the first detected person
pred_classes = [COCO_INSTANCE_CATEGORY_NAMES[i]
for i in list(pred[0]['labels'].cpu().numpy())] # Get the Prediction Score
pred_boxes = [[(i[0], i[1]), (i[2], i[3])]
for i in list(pred[0]['boxes'].cpu().detach().numpy())] # Bounding boxes
pred_scores = list(pred[0]['scores'].cpu().detach().numpy())

person_boxes = []
# Select box has score larger than threshold and is person
for pred_class, pred_box, pred_score in zip(pred_classes, pred_boxes, pred_scores):
if (pred_score > threshold) and (pred_class == 'person'):
person_boxes.append(pred_box)

return person_boxes


def get_pose_estimation_prediction(pose_model, image, centers, scales, transform):
rotation = 0

# pose estimation transformation
model_inputs = []
for center, scale in zip(centers, scales):
trans = get_affine_transform(center, scale, rotation, cfg.MODEL.IMAGE_SIZE)
# Crop smaller image of people
model_input = cv2.warpAffine(
image,
trans,
(int(cfg.MODEL.IMAGE_SIZE[0]), int(cfg.MODEL.IMAGE_SIZE[1])),
flags=cv2.INTER_LINEAR)

# hwc -> 1chw
model_input = transform(model_input)#.unsqueeze(0)
model_inputs.append(model_input)

# n * 1chw -> nchw
model_inputs = torch.stack(model_inputs)

# compute output heatmap
output = pose_model(model_inputs.to(CTX))
coords, _ = get_final_preds(
cfg,
output.cpu().detach().numpy(),
np.asarray(centers),
np.asarray(scales))

return coords


def box_to_center_scale(box, model_image_width, model_image_height):
"""convert a box to center,scale information required for pose transformation
Parameters
----------
box : list of tuple
list of length 2 with two tuples of floats representing
bottom left and top right corner of a box
model_image_width : int
model_image_height : int

Returns
-------
(numpy array, numpy array)
Two numpy arrays, coordinates for the center of the box and the scale of the box
"""
center = np.zeros((2), dtype=np.float32)

bottom_left_corner = box[0]
top_right_corner = box[1]
box_width = top_right_corner[0]-bottom_left_corner[0]
box_height = top_right_corner[1]-bottom_left_corner[1]
bottom_left_x = bottom_left_corner[0]
bottom_left_y = bottom_left_corner[1]
center[0] = bottom_left_x + box_width * 0.5
center[1] = bottom_left_y + box_height * 0.5

aspect_ratio = model_image_width * 1.0 / model_image_height
pixel_std = 200

if box_width > aspect_ratio * box_height:
box_height = box_width * 1.0 / aspect_ratio
elif box_width < aspect_ratio * box_height:
box_width = box_height * aspect_ratio
scale = np.array(
[box_width * 1.0 / pixel_std, box_height * 1.0 / pixel_std],
dtype=np.float32)
if center[0] != -1:
scale = scale * 1.25

return center, scale


def prepare_output_dirs(prefix='/output/'):
pose_dir = os.path.join(prefix, "pose")
if os.path.exists(pose_dir) and os.path.isdir(pose_dir):
shutil.rmtree(pose_dir)
os.makedirs(pose_dir, exist_ok=True)
return pose_dir


def parse_args():
parser = argparse.ArgumentParser(description='Train keypoints network')
# general
parser.add_argument('--cfg', type=str, required=True)
parser.add_argument('--videoFile', type=str, required=True)
parser.add_argument('--outputDir', type=str, default='/output/')
parser.add_argument('--inferenceFps', type=int, default=10)
parser.add_argument('--writeBoxFrames', action='store_true')

parser.add_argument('opts',
help='Modify config options using the command-line',
default=None,
nargs=argparse.REMAINDER)

args = parser.parse_args()

# args expected by supporting codebase
args.modelDir = ''
args.logDir = ''
args.dataDir = ''
args.prevModelDir = ''
return args


def main():
# transformation
pose_transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]),
])

# cudnn related setting
cudnn.benchmark = cfg.CUDNN.BENCHMARK
torch.backends.cudnn.deterministic = cfg.CUDNN.DETERMINISTIC
torch.backends.cudnn.enabled = cfg.CUDNN.ENABLED

args = parse_args()
update_config(cfg, args)
pose_dir = prepare_output_dirs(args.outputDir)
csv_output_rows = []

box_model = torchvision.models.detection.fasterrcnn_resnet50_fpn(pretrained=True)
box_model.to(CTX)
box_model.eval()
pose_model = eval('models.'+cfg.MODEL.NAME+'.get_pose_net')(
cfg, is_train=False
)

if cfg.TEST.MODEL_FILE:
print('=> loading model from {}'.format(cfg.TEST.MODEL_FILE))
pose_model.load_state_dict(torch.load(cfg.TEST.MODEL_FILE), strict=False)
else:
print('expected model defined in config at TEST.MODEL_FILE')

pose_model.to(CTX)
pose_model.eval()

# Loading an video
vidcap = cv2.VideoCapture(args.videoFile)
fps = vidcap.get(cv2.CAP_PROP_FPS)
if fps < args.inferenceFps:
print('desired inference fps is '+str(args.inferenceFps)+' but video fps is '+str(fps))
exit()
skip_frame_cnt = round(fps / args.inferenceFps)
frame_width = int(vidcap.get(cv2.CAP_PROP_FRAME_WIDTH))
frame_height = int(vidcap.get(cv2.CAP_PROP_FRAME_HEIGHT))
outcap = cv2.VideoWriter('{}/{}_pose.avi'.format(args.outputDir, os.path.splitext(os.path.basename(args.videoFile))[0]),
cv2.VideoWriter_fourcc('M', 'J', 'P', 'G'), int(skip_frame_cnt), (frame_width, frame_height))

count = 0
while vidcap.isOpened():
total_now = time.time()
ret, image_bgr = vidcap.read()
count += 1

if not ret:
continue

if count % skip_frame_cnt != 0:
continue

image_rgb = cv2.cvtColor(image_bgr, cv2.COLOR_BGR2RGB)

# Clone 2 image for person detection and pose estimation
if cfg.DATASET.COLOR_RGB:
image_per = image_rgb.copy()
image_pose = image_rgb.copy()
else:
image_per = image_bgr.copy()
image_pose = image_bgr.copy()

# Clone 1 image for debugging purpose
image_debug = image_bgr.copy()

# object detection box
now = time.time()
pred_boxes = get_person_detection_boxes(box_model, image_per, threshold=0.9)
then = time.time()
print("Find person bbox in: {} sec".format(then - now))

# Can not find people. Move to next frame
if not pred_boxes:
count += 1
continue

if args.writeBoxFrames:
for box in pred_boxes:
cv2.rectangle(image_debug, box[0], box[1], color=(0, 255, 0),
thickness=3) # Draw Rectangle with the coordinates

# pose estimation : for multiple people
centers = []
scales = []
for box in pred_boxes:
center, scale = box_to_center_scale(box, cfg.MODEL.IMAGE_SIZE[0], cfg.MODEL.IMAGE_SIZE[1])
centers.append(center)
scales.append(scale)

now = time.time()
pose_preds = get_pose_estimation_prediction(pose_model, image_pose, centers, scales, transform=pose_transform)
then = time.time()
print("Find person pose in: {} sec".format(then - now))

new_csv_row = []
for coords in pose_preds:
# Draw each point on image
for coord in coords:
x_coord, y_coord = int(coord[0]), int(coord[1])
cv2.circle(image_debug, (x_coord, y_coord), 4, (255, 0, 0), 2)
new_csv_row.extend([x_coord, y_coord])

total_then = time.time()

text = "{:03.2f} sec".format(total_then - total_now)
cv2.putText(image_debug, text, (100, 50), cv2.FONT_HERSHEY_SIMPLEX,
1, (0, 0, 255), 2, cv2.LINE_AA)

cv2.imshow("pos", image_debug)
if cv2.waitKey(1) & 0xFF == ord('q'):
break

csv_output_rows.append(new_csv_row)
img_file = os.path.join(pose_dir, 'pose_{:08d}.jpg'.format(count))
cv2.imwrite(img_file, image_debug)
outcap.write(image_debug)


# write csv
csv_headers = ['frame']
for keypoint in COCO_KEYPOINT_INDEXES.values():
csv_headers.extend([keypoint+'_x', keypoint+'_y'])

csv_output_filename = os.path.join(args.outputDir, 'pose-data.csv')
with open(csv_output_filename, 'w', newline='') as csvfile:
csvwriter = csv.writer(csvfile)
csvwriter.writerow(csv_headers)
csvwriter.writerows(csv_output_rows)

vidcap.release()
outcap.release()

cv2.destroyAllWindows()


if __name__ == '__main__':
main()