Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
10 changes: 10 additions & 0 deletions HEPML.bib
Original file line number Diff line number Diff line change
@@ -1,5 +1,15 @@
# HEPML Papers

% December 1, 2025
@article{Young:2025qbx,
author = "Young, Samuel and Terao, Kazuhiro",
title = "{Panda: Self-distillation of Reusable Sensor-level Representations for High Energy Physics}",
eprint = "2512.01324",
archivePrefix = "arXiv",
primaryClass = "hep-ex",
month = "12",
year = "2025"
}

% November 11, 2025
@article{Gavranovic:2025wcj,
Expand Down
2 changes: 1 addition & 1 deletion HEPML.tex
Original file line number Diff line number Diff line change
Expand Up @@ -193,7 +193,7 @@
\end{itemize}
\item \textbf{Anomaly detection}~\cite{Liu:2025kfw,Gerlach:2025brx,CMS:2025lmn,DAvanzo:2025tkf,Arguin:2025lyr,Hallin:2025wyc,Boggia:2025fjj,Ragoni:2025mju,ATLAS:2025cdi,Cheng:2025qhg,Vaselli:2025zkl,ClarkeHall:2025oiz,Dillon:2025yqe,Araz:2025oax,Puljak:2025gtj,Cheng:2025ewj,deSouza:2025riy,ATLAS:2025kuz,Hou:2025prp,Brennan:2025fqy,Chekanov:2025xpk,Banda:2025nrv,Chen:2025mxf,Klein:2025lbj,Chowdhury:2025mul,Oleksiyuk:2025pmu,Metzger:2025ecl,Gambhir:2025afb,ATLAS:2025obc,Brinkerhoff:2025rob,Khot:2025kqg,Arguin:2025ewq,CMS:2024nsz,Hammad:2024dsn,Das:2024fwo,DARWIN:2024unx,Duarte:2024lsg,Zhang:2024ebl,Chekanov:2024ezm,Matos:2024ggs,Caron:2024zxk,Harilal:2024tqq,Leigh:2024chm,Grosso:2024nho,Li:2024htp,Cheng:2024yig,Oleksiyuk:2024hru,Krause:2023uww,Sengupta:2023vtm,Zipper:2023ybp,Metodiev:2023izu,Liu:2023djx,Zhang:2023khv,Bai:2023yyy,Grosso:2023owo,Freytsis:2023cjr,Buhmann:2023acn,Finke:2023ltw,Bickendorf:2023nej,CMSECAL:2023fvz,Chekanov:2023uot,ATLAS:2023azi,Vaslin:2023lig,Golling:2023yjq,Mikuni:2023tok,Sengupta:2023xqy,Golling:2023juz,Roche:2023int,Schuhmacher:2023pro,Mastandrea:2022vas,Araz:2022zxk,Kasieczka:2022naq,Hallin:2022eoq,Kamenik:2022qxs,Park:2022zov,Caron:2022wrw,Dillon:2022mkq,Verheyen:2022tov,Finke:2022lsu,Fanelli:2022xwl,Letizia:2022xbe,Raine:2022hht,Birman:2022xzu,Dillon:2022tmm,Jiang:2022sfw,Alvi:2022fkk,Buss:2022lxw,Aguilar-Saavedra:2022ejy,Bradshaw:2022qev,Ngairangbam:2021yma,Canelli:2021aps,dAgnolo:2021aun,Chekanov:2021pus,Mikuni:2021nwn,Lester:2021aks,Tombs:2021wae,Aguilar-Saavedra:2021utu,Herrero-Garcia:2021goa,Jawahar:2021vyu,Fraser:2021lxm,Ostdiek:2021bem,Hallin:2021wme,Govorkova:2021utb,Volkovich:2021txe,Kasieczka:2021tew,Govorkova:2021hqu,Caron:2021wmq,Dorigo:2021iyy,Aarrestad:2021oeb,Kahn:2021drv,Atkinson:2021nlt,Shih:2021kbt,Finke:2021sdf,Dillon:2021nxw,Collins:2021nxn,Bortolato:2021zic,Blance:2021gcs,Batson:2021agz,Chakravarti:2021svb,Kasieczka:2021xcg,Stein:2020rou,Faroughy:2020gas,Park:2020pak,vanBeekveld:2020txa,Mikuni:2020qds,pol2020anomaly,1815227,aguilarsaavedra2020mass,Alexander:2020mbx,Thaprasop:2020mzp,Khosa:2020qrz,Cheng:2020dal,Amram:2020ykb,1800445,1797846,collaboration2020dijet,knapp2020adversarially,Romao:2020ojy,Romao:2019dvs,Aguilar-Saavedra:2017rzt,Nachman:2020lpy,Andreassen:2020nkr,Dillon:2019cqt,1809.02977,Mullin:2019mmh,DeSimone:2018efk,Hajer:2018kqm,Blance:2019ibf,Cerri:2018anq,Roy:2019jae,Heimel:2018mkt,Farina:2018fyg,DAgnolo:2019vbw,Collins:2019jip,Collins:2018epr,DAgnolo:2018cun}
\\\textit{The goal of anomaly detection is to identify abnormal events. The abnormal events could be from physics beyond the Standard Model or from faults in a detector. While nearly all searches for new physics are technically anomaly detection, this category is for methods that are mode-independent (broadly defined). Anomalies in high energy physics tend to manifest as over-densities in phase space (often called `population anomalies') in contrast to off-manifold anomalies where you can flag individual examples as anomalous. }
\item \textbf{Foundation Models, LLMs}~\cite{Bhimji:2025isp,Song:2025odk,Morales-Alvarado:2025isx,Bakshi:2025fgx,Visive:2025flm,Hallin:2025ywf,Diefenbacher:2025zzn,Sagar:2025mrd,Li:2025vvr,McGreivy:2025rrz,Sagar:2025ebh,Park:2025ebs,Barman:2025kqr,Algren:2025zff,Saqlain:2025owc,Heneka:2025fpe,Giroux:2025elr,Tani:2025osu,Mikuni:2025tar,Barman:2025wfb,Amram:2024fjg,Ho:2024qyf,OmanaKuttan:2024mwr,Wildridge:2024yeg,Leigh:2024ked,Mikuni:2024qsr,Zhang:2024kws,Fanelli:2024ktq,Harris:2024sra,Birk:2024knn,Vigl:2024lat}
\item \textbf{Foundation Models, LLMs}~\cite{Young:2025qbx,Bhimji:2025isp,Song:2025odk,Morales-Alvarado:2025isx,Bakshi:2025fgx,Visive:2025flm,Hallin:2025ywf,Diefenbacher:2025zzn,Sagar:2025mrd,Li:2025vvr,McGreivy:2025rrz,Sagar:2025ebh,Park:2025ebs,Barman:2025kqr,Algren:2025zff,Saqlain:2025owc,Heneka:2025fpe,Giroux:2025elr,Tani:2025osu,Mikuni:2025tar,Barman:2025wfb,Amram:2024fjg,Ho:2024qyf,OmanaKuttan:2024mwr,Wildridge:2024yeg,Leigh:2024ked,Mikuni:2024qsr,Zhang:2024kws,Fanelli:2024ktq,Harris:2024sra,Birk:2024knn,Vigl:2024lat}
\\\textit{A foundation model is a machine learning or deep learning model that is trained on broad data such that it can be applied across a wide range of use cases.}
\item \textbf{Kolmogorov-Arnold Networks (KANs)}~\cite{Dai:2025dir,Kou:2024hzd,Abasov:2024hyq,Erdmann:2024unt}
\\\textit{Kolmogorov-Arnold Networks (KANs) are alternatives to standard multi-layer perceptrons in which instead of fixed activation functions on nodes (``neurons'') have learnable activation functions on edges (``weights''). This makes them more expressible and interpretable compared to multi-layer perceptrons.}
Expand Down
1 change: 1 addition & 0 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -2356,6 +2356,7 @@ This review was built with the help of the HEP-ML community, the [INSPIRE REST A

## Foundation Models, LLMs.

* [Panda: Self-distillation of Reusable Sensor-level Representations for High Energy Physics](https://arxiv.org/abs/2512.01324) (2025)
* [OmniLearned: A Foundation Model Framework for All Tasks Involving Jet Physics](https://arxiv.org/abs/2510.24066) (2025)
* [Iterated Agent for Symbolic Regression](https://arxiv.org/abs/2510.08317) (2025)
* [Foundation models for equation discovery in high energy physics](https://arxiv.org/abs/2510.03397) (2025)
Expand Down
1 change: 1 addition & 0 deletions docs/index.md
Original file line number Diff line number Diff line change
Expand Up @@ -2543,6 +2543,7 @@ const expandElements = shouldExpand => {

??? example "Foundation Models, LLMs."

* [Panda: Self-distillation of Reusable Sensor-level Representations for High Energy Physics](https://arxiv.org/abs/2512.01324) (2025)
* [OmniLearned: A Foundation Model Framework for All Tasks Involving Jet Physics](https://arxiv.org/abs/2510.24066) (2025)
* [Iterated Agent for Symbolic Regression](https://arxiv.org/abs/2510.08317) (2025)
* [Foundation models for equation discovery in high energy physics](https://arxiv.org/abs/2510.03397) (2025)
Expand Down