Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
11 changes: 11 additions & 0 deletions HEPML.bib
Original file line number Diff line number Diff line change
@@ -1,5 +1,16 @@
# HEPML Papers

% December 18, 2025
@article{Araz:2025vuw,
author = "Araz, Jack Y. and Spannowsky, Michael",
title = "{Another Fit Bites the Dust: Conformal Prediction as a Calibration Standard for Machine Learning in High-Energy Physics}",
eprint = "2512.17048",
archivePrefix = "arXiv",
primaryClass = "hep-ph",
reportNumber = "IPPP/25/88",
month = "12",
year = "2025"
}

% November 11, 2025
@article{Gavranovic:2025wcj,
Expand Down
4 changes: 2 additions & 2 deletions HEPML.tex
Original file line number Diff line number Diff line change
Expand Up @@ -214,9 +214,9 @@
\item \textbf{Uncertainty Quantification}
\\\textit{Estimating and mitigating uncertainty is essential for the successful deployment of machine learning methods in high energy physics. }
\begin{itemize}
\item \textbf{Interpretability}~\cite{Voetberg:2025fix,Vent:2025ddm,Erdmann:2025xpm,Chung:2025zib,Larkoski:2025clo,Kriesten:2024are,Gavrikov:2024rso,Wilkinson:2024xva,Ngairangbam:2023cps,Mengel:2023mnw,Barman:2023hbs,Roy:2022gge,Khot:2022aky,Grojean:2022mef,Anzalone:2022hrt,Bradshaw:2022qev,Mokhtar:2021bkf,Collins:2021pld,Romero:2021qlf,Grojean:2020ech,Agarwal:2020fpt,Diefenbacher:2019ezd,Chang:2017kvc,deOliveira:2015xxd}
\item \textbf{Interpretability}~\cite{Araz:2025vuw,Voetberg:2025fix,Vent:2025ddm,Erdmann:2025xpm,Chung:2025zib,Larkoski:2025clo,Kriesten:2024are,Gavrikov:2024rso,Wilkinson:2024xva,Ngairangbam:2023cps,Mengel:2023mnw,Barman:2023hbs,Roy:2022gge,Khot:2022aky,Grojean:2022mef,Anzalone:2022hrt,Bradshaw:2022qev,Mokhtar:2021bkf,Collins:2021pld,Romero:2021qlf,Grojean:2020ech,Agarwal:2020fpt,Diefenbacher:2019ezd,Chang:2017kvc,deOliveira:2015xxd}
\\\textit{Machine learning methods that are interpretable maybe more robust and thus less susceptible to various sources of uncertainty.}
\item \textbf{Estimation}~\cite{Romero:2025rck,Keller:2025bac,Peron:2025mtj,Benevedes:2025nzr,Desai:2025mpy,Elsharkawy:2025yeb,Khot:2025kqg,Kriesten:2024ist,Panahi:2024sfb,Bieringer:2024nbc,Dickinson:2023yes,Golutvin:2023fle,Koh:2023wst,Cheung:2022dil,Bellagente:2021yyh,Barnard:2016qma,Nachman:2019yfl,Nachman:2019dol}
\item \textbf{Estimation}~\cite{Araz:2025vuw,Romero:2025rck,Keller:2025bac,Peron:2025mtj,Benevedes:2025nzr,Desai:2025mpy,Elsharkawy:2025yeb,Khot:2025kqg,Kriesten:2024ist,Panahi:2024sfb,Bieringer:2024nbc,Dickinson:2023yes,Golutvin:2023fle,Koh:2023wst,Cheung:2022dil,Bellagente:2021yyh,Barnard:2016qma,Nachman:2019yfl,Nachman:2019dol}
\\\textit{A first step in reducing uncertainties is estimating their size.}
\item \textbf{Mitigation}~\cite{SuperCDMS:2025ywe,Azakli:2025yfb,Stein:2022nvf,Araz:2021wqm,Louppe:2016ylz,Englert:2018cfo,Estrade:DLPS2017}
\\\textit{This category is for proposals to reduce uncertainty.}
Expand Down
2 changes: 2 additions & 0 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -2608,6 +2608,7 @@ This review was built with the help of the HEP-ML community, the [INSPIRE REST A
## Uncertainty Quantification
### Interpretability

* [Another Fit Bites the Dust: Conformal Prediction as a Calibration Standard for Machine Learning in High-Energy Physics](https://arxiv.org/abs/2512.17048) (2025)
* [NuGraph2 with Explainability: Post-hoc Explanations for Geometric Neural Network Predictions](https://arxiv.org/abs/2509.10676) (2025)
* [How to Deep-Learn the Theory behind Quark-Gluon Tagging](https://arxiv.org/abs/2507.21214) (2025)
* [What exactly did the Transformer learn from our physics data?](https://arxiv.org/abs/2505.21042) [[DOI](https://doi.org/10.1007/s41781-025-00145-4)] (2025)
Expand Down Expand Up @@ -2635,6 +2636,7 @@ This review was built with the help of the HEP-ML community, the [INSPIRE REST A

### Estimation

* [Another Fit Bites the Dust: Conformal Prediction as a Calibration Standard for Machine Learning in High-Energy Physics](https://arxiv.org/abs/2512.17048) (2025)
* [Efficient Estimation of Unfactorizable Systematic Uncertainties](https://arxiv.org/abs/2509.15500) (2025)
* [Experimental Uncertainty Propagation in Neural Network Extraction in Hadronic Physics](https://arxiv.org/abs/2509.11456) (2025)
* [Uncertainty Quantification and Propagation for ACORN, a geometric deep learning tracking pipeline for HEP experiments](https://arxiv.org/abs/2508.16518) (2025)
Expand Down
2 changes: 2 additions & 0 deletions docs/index.md
Original file line number Diff line number Diff line change
Expand Up @@ -2828,6 +2828,7 @@ const expandElements = shouldExpand => {
### Interpretability
</div>

* [Another Fit Bites the Dust: Conformal Prediction as a Calibration Standard for Machine Learning in High-Energy Physics](https://arxiv.org/abs/2512.17048) (2025)
* [NuGraph2 with Explainability: Post-hoc Explanations for Geometric Neural Network Predictions](https://arxiv.org/abs/2509.10676) (2025)
* [How to Deep-Learn the Theory behind Quark-Gluon Tagging](https://arxiv.org/abs/2507.21214) (2025)
* [What exactly did the Transformer learn from our physics data?](https://arxiv.org/abs/2505.21042) [[DOI](https://doi.org/10.1007/s41781-025-00145-4)] (2025)
Expand Down Expand Up @@ -2860,6 +2861,7 @@ const expandElements = shouldExpand => {
### Estimation
</div>

* [Another Fit Bites the Dust: Conformal Prediction as a Calibration Standard for Machine Learning in High-Energy Physics](https://arxiv.org/abs/2512.17048) (2025)
* [Efficient Estimation of Unfactorizable Systematic Uncertainties](https://arxiv.org/abs/2509.15500) (2025)
* [Experimental Uncertainty Propagation in Neural Network Extraction in Hadronic Physics](https://arxiv.org/abs/2509.11456) (2025)
* [Uncertainty Quantification and Propagation for ACORN, a geometric deep learning tracking pipeline for HEP experiments](https://arxiv.org/abs/2508.16518) (2025)
Expand Down