Implementation of CaSAR: Contact-aware Skeletal Action Recognition
label_test_data.py- A Flask webserver that provides API (load frames, get action sequence, put label) for manual labeling of test dataset
- Used to generate a labeled for H2O test dataset. Our label results in:
action_test.txt
modules.py- CaSAR torch model and dataset definitions
test.py- CaSAR testing script
train.py- CaSAR training script
- Training configuration found in
config.yaml
visualize.ipynb- Python notebook for visualizing H2O dataset
- Install dependencies
pip install -r requirements.txt- Implemented on Python 3.11.8
- Download H2O dataset: https://taeinkwon.com/projects/h2o/
- Dataset preparation
- Replace
action_labels/action_test.txt(unlabled) in H2O dataset withaction_test.txt(labeled) provided in this repository
- Replace