A vanila numpy implementation of SVM using Sequential Minimal Optimization algorithm.
A One-vs-ALL strategy is employed for multiclass classification task.
git clone https://github.com/itsikad/svm-smo.git
cd svm-smo
pip install -r requirements.txt
from smo_optimizer import SVM
# dataset
x_train/test = ...
y_train/test = ... # binary labels
# init model
model = SVM(kernel_type='rbf')
# train
model.fit(x_train, y_train)
# predict
y_pred = model.predict(x_test)
Example uses Iris Flower dataset. Employs a One-vs-All strategy (OneVsAllClassifier) to solve a multi-class classification problem.
python example.py