Skip to content

Improve derridaean_similarity using quantum simulation #16

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 4 commits into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from 3 commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
8 changes: 5 additions & 3 deletions demo/demo.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,22 +4,23 @@
# Load documents from the JSONL file
documents = []

with open("demo/pokemon.jsonl", "r") as f:
with open("pokemon.jsonl", "r") as f:
for line in f:
documents.append(json.loads(line))

# Instantiate HyperDB with the list of documents and the key "description"
db = HyperDB(documents, key="info.description")

# Save the HyperDB instance to a file
db.save("demo/pokemon_hyperdb.pickle.gz")
db.save("pokemon_hyperdb.pickle.gz")

# Load the HyperDB instance from the file
db.load("demo/pokemon_hyperdb.pickle.gz")
db.load("pokemon_hyperdb.pickle.gz")

# Query the HyperDB instance with a text input
results = db.query("Likes to sleep.", top_k=5)


# Define a function to pretty print the results
def format_entry(pokemon):
name = pokemon["name"]
Expand All @@ -39,6 +40,7 @@ def format_entry(pokemon):
"""
return pretty_pokemon


# Print the top 5 most similar Pokémon descriptions
for result in results:
print(format_entry(result))
39 changes: 36 additions & 3 deletions hyperdb/galaxy_brain_math_shit.py
Original file line number Diff line number Diff line change
@@ -1,33 +1,65 @@
"""Super valuable proprietary algorithm for ranking vector similarity. Top secret."""
import numpy as np
import random

def get_norm_vector(vector):
if len(vector.shape) == 1:
return vector / np.linalg.norm(vector)
else:
return vector / np.linalg.norm(vector, axis=1)[:, np.newaxis]


def cosine_similarity(vectors, query_vector):
norm_vectors = get_norm_vector(vectors)
norm_query_vector = get_norm_vector(query_vector)
similarities = np.dot(norm_vectors, norm_query_vector.T)
return similarities


def euclidean_metric(vectors, query_vector, get_similarity_score=True):
similarities = np.linalg.norm(vectors - query_vector, axis=1)
if get_similarity_score:
similarities = 1 / (1 + similarities)
return similarities


def derridaean_similarity(vectors, query_vector):
class Qubit:
def __init__(self):
self.state = np.array([1, 0], dtype=np.complex128)

def apply(self, gate):
self.state = np.dot(gate, self.state)

def measure(self):
probabilities = np.abs(self.state) ** 2
result = np.random.choice([0, 1], p=probabilities)
return result

# Hadamard gate
h_gate = np.array([[1 / np.sqrt(2), 1 / np.sqrt(2)],
[1 / np.sqrt(2), -1 / np.sqrt(2)]], dtype=np.complex128)

qubit = Qubit()

def random_change(value):
return value + random.uniform(-0.2, 0.2)
qubit.apply(h_gate)

i = 0
for j in range(8):
i |= qubit.measure() << (7 - j)

f = i / (2 ** 8 - 1)

# -0.2 to 0.2
r_result = -0.2 + f * 0.4

return value + r_result

similarities = cosine_similarity(vectors, query_vector)
derrida_similarities = np.vectorize(random_change)(similarities)
return derrida_similarities


def adams_similarity(vectors, query_vector):
def adams_change(value):
return 0.42
Expand All @@ -36,8 +68,9 @@ def adams_change(value):
adams_similarities = np.vectorize(adams_change)(similarities)
return adams_similarities


def hyper_SVM_ranking_algorithm_sort(vectors, query_vector, top_k=5, metric=cosine_similarity):
"""HyperSVMRanking (Such Vector, Much Ranking) algorithm proposed by Andrej Karpathy (2023) https://arxiv.org/abs/2303.18231"""
similarities = metric(vectors, query_vector)
top_indices = np.argsort(similarities, axis=0)[-top_k:][::-1]
return top_indices.flatten()
return top_indices.flatten()
4 changes: 2 additions & 2 deletions requirements.txt
Original file line number Diff line number Diff line change
@@ -1,3 +1,3 @@
numpy
pytest
openai
openai
pytest