Skip to content

jeffheaton/app_generative_ai

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

T81 559: Applications of Generative Artificial Intelligence

Washington University in St. Louis

Instructor: Jeff Heaton

  • Section 1. Spring 2026, Wednesday, 6:00 PM
    Location: CUPPLES II, Room 00203

Course Description

This course covers the dynamic world of Generative Artificial Intelligence providing hands-on practical applications of Large Language Models (LLMs) and advanced text-to-image networks. Using Python as the primary tool, students will interact with OpenAI's models for both text and images. The course begins with a solid foundation in generative AI principles, moving swiftly into the utilization of LangChain for model-agnostic access and the management of prompts, indexes, chains, and agents. A significant focus is placed on the integration of the Retrieval-Augmented Generation (RAG) model with graph databases, unlocking new possibilities in AI applications.

As the course progresses, students will delve into sophisticated image generation and augmentation techniques, including LoRA (Low-Rank Adaptation), and learn the art of fine-tuning generative neural networks for specific needs. The final part of the course is dedicated to mastering prompt engineering, a critical skill for optimizing the efficiency and creativity of AI outputs.

Note: This course will require the purchase of up to $100 in OpenAI API credits.

Objectives

  1. Learn how Generative AI fits into the landscape of deep learning and predictive AI.
  2. Be able to create ChatBots, Agents, and other LLM-based automation assistants.
  3. Understand how to make use of image generative AI programmatically.

Syllabus

This syllabus presents the expected class schedule, due dates, and reading assignments.

Module Content
Module 1
Meet on 01/12/2026
Module 1: Introduction to Generative AI
  • 1.1 Course Overview
  • 1.2 Generative AI Overview
  • 1.3 Introduction to OpenAI
  • 1.4 Introduction to LangChain
  • 1.5 Prompt Engineering
  • We will meet on campus this week (in-class meeting #1)
Module 2
Week of 01/19/2026
Module 2: Prompt-Based Development
  • 2.1 Prompting for Code Generation
  • 2.2 Handling Revision Prompts
  • 2.3 Using an LLM to Help Debug
  • 2.4 Tracking Prompts in Software Development
  • 2.5 Limits of LLM Code Generation
  • Module 1 Program due: 01/21/2026
  • Icebreaker due: 01/21/2026
Module 3
Meet on 01/26/2026
Module 3: Introduction to Large Language Models
  • 3.1 Foundation Models
  • 3.2 Text Generation
  • 3.3 Text Summarization
  • 3.4 Text Classification
  • 3.5 LLM Writes a Book
  • Module 2 Program due: 01/27/2026
  • We will meet on campus this week (in-class meeting #2)
Module 4
Week of 02/02/2026
Module 4: LangChain — Chat and Memory
  • 4.1 LangChain Conversations
  • 4.2 Conversation Buffer Window Memory
  • 4.3 Chat with Summary and Fixed Window
  • 4.4 Chat with Persistence, Rollback and Regeneration
  • 4.5 Automated Coder Application
  • Module 3 Program due: 02/03/2026
Module 5
Week of 02/09/2026
Module 5: LangChain — Data Extraction
  • 5.1 Structured Output Parser
  • 5.2 Other Parsers (CSV, JSON, Pandas, Datetime)
  • 5.3 Pydantic Parser
  • 5.4 Custom Output Parser
  • 5.5 Output-Fixing Parser
  • Module 4 Program due: 02/10/2026
Module 6
Meet on 02/16/2026
Module 6: Retrieval-Augmented Generation (RAG)
  • 6.1 Introduction to RAG
  • 6.2 Introduction to ChromaDB
  • 6.3 Understanding Embeddings
  • 6.4 Q&A Over Documents
  • 6.5 Embedding Databases
  • Module 5 Program due: 02/17/2026
  • We will meet on campus this week (in-class meeting #3)
Module 7
Week of 02/23/2026
Module 7: LangChain — Agents
  • 7.1 Introduction to LangChain Agents
  • 7.2 Understanding LangChain Agent Tools
  • 7.3 LangChain Retrieval and Search Tools
  • 7.4 Constructing LangChain Agents
  • 7.5 Custom Agents
  • Module 6 Program due: 02/24/2026
Module 8
Meet on 03/02/2026
Module 8: Kaggle Assignment
  • 8.1 Introduction to Kaggle
  • 8.2 Kaggle Notebooks
  • 8.3 Small Large Language Models
  • 8.4 Accessing Small LLMs from Kaggle
  • 8.5 Current Semester’s Kaggle
  • Module 7 Program due: 03/03/2026
  • We will meet on campus this week (in-class meeting #4)
Module 9
Week of 03/16/2026
Module 9: Multimodal and Text-to-Image
  • 9.1 Introduction to Multimodal and Text-to-Image
  • 9.2 Generating Images with DALL·E
  • 9.3 Editing Existing Images with DALL·E
  • 9.4 Multimodal Models
  • 9.5 Illustrated Book
  • Module 8 Program due: 03/17/2026
Module 10
Week of 03/23/2026
Module 10: Introduction to Streamlit
  • 10.1 Running Streamlit in Google Colab
  • 10.2 Streamlit Introduction
  • 10.3 Understanding Streamlit State
  • 10.4 Creating a Chat Application
  • 10.5 More Advanced Chat Application
  • Module 9 Program due: 03/24/2026
Module 11
Week of 03/30/2026
Module 11: Fine Tuning
  • 11.1 When is Fine Tuning Necessary
  • 11.2 Preparing a Dataset for Fine Tuning
  • 11.3 OpenAI Fine Tuning
  • 11.4 Application of Fine Tuning
  • 11.5 Evaluating Fine Tuning and Optimization
  • Module 10 Program due: 03/31/2026
Module 12
Week of 04/06/2026
Module 12: Prompt Engineering
  • 12.1 Intro to Prompt Engineering
  • 12.2 Few-Shot and Chain-of-Thought
  • 12.3 Persona and Role Patterns
  • 12.4 Question, Refinement, and Verification Patterns
  • 12.5 Content Creation and Structured Prompt Patterns
Module 13
Week of 04/13/2026
Module 13: Speech Processing
  • 13.1 Voice-Based ChatBots
  • 13.2 OpenAI Speech Generation
  • 13.3 OpenAI Speech Recognition
  • 13.4 A Voice-Based ChatBot
  • 13.5 Future Directions in GenAI
  • Kaggle Competition Closes: 4/19/2026 (midnight), assignment due in Canvas 04/21/2026
Week 14
Week of 04/20/2026
Wrapup Discuss final Kaggle results and future directions of this technology.

About

T81-559: Applications of Generative Artificial Intelligence

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages