Skip to content

adaboundw #144

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 2 commits into
base: master
Choose a base branch
from
Open
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
174 changes: 174 additions & 0 deletions torch_optimizer/adabound.py
Original file line number Diff line number Diff line change
Expand Up @@ -175,3 +175,177 @@ def step(self, closure: OptLossClosure = None) -> OptFloat:

p.data.add_(-step_size)
return loss



class AdaBound(Optimizer):
Copy link
Owner

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Should this be named AdaBoundW?

Copy link
Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Yes, of course - my bad!

Copy link
Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Have changed to AdaBoundW now

r"""Implements AdaBound algorithm with Decoupled Weight Decay (arxiv.org/abs/1711.05101)

It has been proposed in `Adaptive Gradient Methods with Dynamic Bound of
Learning Rate`__.

Arguments:
params: iterable of parameters to optimize or dicts defining
parameter groups
lr: learning rate (default: 1e-3)
betas: coefficients used for computing running averages of gradient
and its square (default: (0.9, 0.999))
final_lr: final (SGD) learning rate (default: 0.1)
gamma: convergence speed of the bound functions
(default: 1e-3)
eps: term added to the denominator to improve numerical stability
(default: 1e-8)
weight_decay: weight decay (L2 penalty) (default: 0)
amsbound: whether to use the AMSBound variant of this algorithm

Example:
>>> import torch_optimizer as optim
>>> optimizer = optim.AdaBoundW(model.parameters(), lr=0.1, weight_decay=0.001)
>>> optimizer.zero_grad()
>>> loss_fn(model(input), target).backward()
>>> optimizer.step()

__ https://arxiv.org/abs/1902.09843

Note:
Reference code: https://github.com/Luolc/AdaBound
"""

def __init__(
self,
params: Params,
lr: float = 1e-3,
betas: Betas2 = (0.9, 0.999),
final_lr: float = 0.1,
gamma: float = 1e-3,
eps: float = 1e-8,
weight_decay: float = 0,
amsbound: bool = False,
) -> None:
if lr <= 0.0:
raise ValueError('Invalid learning rate: {}'.format(lr))
if eps < 0.0:
raise ValueError('Invalid epsilon value: {}'.format(eps))
if not 0.0 <= betas[0] < 1.0:
raise ValueError(
'Invalid beta parameter at index 0: {}'.format(betas[0])
)
if not 0.0 <= betas[1] < 1.0:
raise ValueError(
'Invalid beta parameter at index 1: {}'.format(betas[1])
)
if final_lr < 0.0:
raise ValueError(
'Invalid final learning rate: {}'.format(final_lr)
)
if not 0.0 <= gamma < 1.0:
raise ValueError('Invalid gamma parameter: {}'.format(gamma))
if weight_decay < 0:
raise ValueError(
'Invalid weight_decay value: {}'.format(weight_decay)
)
defaults = dict(
lr=lr,
betas=betas,
final_lr=final_lr,
gamma=gamma,
eps=eps,
weight_decay=weight_decay,
amsbound=amsbound,
)
super(AdaBoundW, self).__init__(params, defaults)
self.base_lrs = [group['lr'] for group in self.param_groups]

def __setstate__(self, state: State) -> None:
super(AdaBound, self).__setstate__(state)
for group in self.param_groups:
group.setdefault('amsbound', False)

def step(self, closure: OptLossClosure = None) -> OptFloat:
r"""Performs a single optimization step.

Arguments:
closure: A closure that reevaluates the model and returns the loss.
"""
loss = None
if closure is not None:
loss = closure()

for group, base_lr in zip(self.param_groups, self.base_lrs):
for p in group['params']:
if p.grad is None:
continue

# Perform stepweight decay
p.mul_(1 - base_lr * group['weight_decay'])

grad = p.grad.data
if grad.is_sparse:
msg = (
'AdaBound does not support sparse gradients, '
'please consider SparseAdam instead'
)
raise RuntimeError(msg)
amsbound = group['amsbound']

state = self.state[p]

# State initialization
if len(state) == 0:
state['step'] = 0
# Exponential moving average of gradient values
state['exp_avg'] = torch.zeros_like(p)
# Exponential moving average of squared gradient values
state['exp_avg_sq'] = torch.zeros_like(p)
if amsbound:
# Maintains max of all exp. moving avg. of
# sq. grad. values
state['max_exp_avg_sq'] = torch.zeros_like(p)

exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq']
if amsbound:
max_exp_avg_sq = state['max_exp_avg_sq']
beta1, beta2 = group['betas']

state['step'] += 1

# if group['weight_decay'] != 0:
# grad = grad.add(group['weight_decay'], p.data)

# Decay the first and second moment running average coefficient
exp_avg.mul_(beta1).add_(1 - beta1, grad)
exp_avg_sq.mul_(beta2).addcmul_(1 - beta2, grad, grad)
if amsbound:
# Maintains the maximum of all 2nd moment running
# avg. till now
torch.max(max_exp_avg_sq, exp_avg_sq, out=max_exp_avg_sq)
# Use the max. for normalizing running avg. of gradient
denom = max_exp_avg_sq.sqrt().add_(group['eps'])
else:
denom = exp_avg_sq.sqrt().add_(group['eps'])

bias_correction1 = 1 - beta1 ** state['step']
bias_correction2 = 1 - beta2 ** state['step']
step_size = (
group['lr']
* math.sqrt(bias_correction2)
/ bias_correction1
)

# Applies bounds on actual learning rate
# lr_scheduler cannot affect final_lr, this is a workaround
# to apply lr decay
final_lr = group['final_lr'] * group['lr'] / base_lr
lower_bound = final_lr * (
1 - 1 / (group['gamma'] * state['step'] + 1)
)
upper_bound = final_lr * (
1 + 1 / (group['gamma'] * state['step'])
)
step_size = torch.full_like(denom, step_size)
step_size.div_(denom).clamp_(lower_bound, upper_bound).mul_(
exp_avg
)

p.data.add_(-step_size)
return loss