|
| 1 | +"""Implementation of the BGIG model for PROJ framework""" |
| 2 | + |
| 3 | +from typing import List, Tuple, Optional, Union |
| 4 | + |
| 5 | +import numpy as np |
| 6 | +import scipy |
| 7 | + |
| 8 | +from fypy.model.levy.LevyModel import LevyModel |
| 9 | +from fypy.model.FourierModel import Cumulants |
| 10 | +from fypy.termstructures.ForwardCurve import ForwardCurve |
| 11 | +from fypy.termstructures.DiscountCurve import DiscountCurve |
| 12 | + |
| 13 | + |
| 14 | +class BGIG(LevyModel): |
| 15 | + """ |
| 16 | + Implementation of the BGIG model as introduced in: |
| 17 | +
|
| 18 | + The bilateral generalized inverse Gaussian process with applications |
| 19 | + to financial modeling, G. AGAZZOTTI, JP. Aguilar |
| 20 | + """ |
| 21 | + |
| 22 | + def __init__( |
| 23 | + self, |
| 24 | + forwardCurve: ForwardCurve, |
| 25 | + discountCurve: DiscountCurve, |
| 26 | + a_p: float = 500, |
| 27 | + b_p: float = 0.05, |
| 28 | + p_p: float = 2, |
| 29 | + a_m: float = 300, |
| 30 | + b_m: float = 0.03, |
| 31 | + p_m: float = 2, |
| 32 | + ): |
| 33 | + """ |
| 34 | + BGIG model |
| 35 | +
|
| 36 | + Args: |
| 37 | + forwardCurve (ForwardCurve): fwd |
| 38 | + discountCurve (DiscountCurve): discount |
| 39 | + a_p (float, optional): Defaults to 500. |
| 40 | + b_p (float, optional): Defaults to 0.05. |
| 41 | + p_p (float, optional): Defaults to 2. |
| 42 | + a_m (float, optional): Defaults to 300. |
| 43 | + b_m (float, optional): Defaults to 0.03. |
| 44 | + p_m (float, optional): Defaults to 2. |
| 45 | + """ |
| 46 | + super().__init__( |
| 47 | + forwardCurve=forwardCurve, |
| 48 | + discountCurve=discountCurve, |
| 49 | + params=np.asarray([a_p, b_p, p_p, a_m, b_m, p_m]), |
| 50 | + ) |
| 51 | + |
| 52 | + #################################### |
| 53 | + ####### MODEL PARAMETERS ########## |
| 54 | + #################################### |
| 55 | + |
| 56 | + @property |
| 57 | + def a_p(self) -> float: |
| 58 | + """Model Parameter""" |
| 59 | + return self._params[0] |
| 60 | + |
| 61 | + @property |
| 62 | + def b_p(self) -> float: |
| 63 | + """Model Parameter""" |
| 64 | + return self._params[1] |
| 65 | + |
| 66 | + @property |
| 67 | + def p_p(self) -> float: |
| 68 | + """Model Parameter""" |
| 69 | + return self._params[2] |
| 70 | + |
| 71 | + @property |
| 72 | + def a_m(self) -> float: |
| 73 | + """Model Parameter""" |
| 74 | + return self._params[3] |
| 75 | + |
| 76 | + @property |
| 77 | + def b_m(self) -> float: |
| 78 | + """Model Parameter""" |
| 79 | + return self._params[4] |
| 80 | + |
| 81 | + @property |
| 82 | + def p_m(self) -> float: |
| 83 | + """Model Parameter""" |
| 84 | + return self._params[5] |
| 85 | + |
| 86 | + #################################### |
| 87 | + ####### CUMULANTS HELPERS ########## |
| 88 | + #################################### |
| 89 | + |
| 90 | + def ratio_bessel(self, omega: float, p: float) -> float: |
| 91 | + """ |
| 92 | + ratio of bessel function |
| 93 | +
|
| 94 | + Args: |
| 95 | + omega (float): omega |
| 96 | + p (float): p params |
| 97 | +
|
| 98 | + Returns: |
| 99 | + float: ratio of bessel |
| 100 | + """ |
| 101 | + return scipy.special.kv(p + 1, omega) / scipy.special.kv(p, omega) |
| 102 | + |
| 103 | + def c1(self, omega: float, eta: float, p: float) -> float: |
| 104 | + """ |
| 105 | + cumulants of order 1 of a one sided BIG distribution |
| 106 | +
|
| 107 | + Args: |
| 108 | + omega (float): omega |
| 109 | + eta (float): eta |
| 110 | + p (float): p |
| 111 | +
|
| 112 | + Returns: |
| 113 | + float: c1 |
| 114 | + """ |
| 115 | + return self.ratio_bessel(omega, p) * eta |
| 116 | + |
| 117 | + def c2(self, omega: float, eta: float, p: float) -> float: |
| 118 | + """ |
| 119 | + cumulants of order 2 of a one sided BIG distribution |
| 120 | +
|
| 121 | + Args: |
| 122 | + omega (float): omega |
| 123 | + eta (float): eta |
| 124 | + p (float): p |
| 125 | +
|
| 126 | + Returns: |
| 127 | + float: c2 |
| 128 | + """ |
| 129 | + polynom = ( |
| 130 | + -(self.ratio_bessel(omega, p) ** 2) |
| 131 | + + (2 * (p + 1) / omega) * self.ratio_bessel(omega, p) |
| 132 | + + 1 |
| 133 | + ) |
| 134 | + return polynom * eta**2 |
| 135 | + |
| 136 | + def c3(self, omega: float, eta: float, p: float): |
| 137 | + """ |
| 138 | + cumulants of order 3 of a one sided BIG distribution |
| 139 | +
|
| 140 | + Args: |
| 141 | + omega (float): omega |
| 142 | + eta (float): eta |
| 143 | + p (float): p |
| 144 | +
|
| 145 | + Returns: |
| 146 | + float: c3 |
| 147 | + """ |
| 148 | + polynom = ( |
| 149 | + 2 * self.ratio_bessel(omega, p) ** 3 |
| 150 | + - (6 * (p + 1) / omega) * self.ratio_bessel(omega, p) ** 2 |
| 151 | + + ((4 * (p + 1) * (p + 2) / omega**2) - 2) * self.ratio_bessel(omega, p) |
| 152 | + + 2 * (p + 1) / omega |
| 153 | + ) |
| 154 | + return polynom * eta**3 |
| 155 | + |
| 156 | + def c4(self, omega: float, eta: float, p: float): |
| 157 | + """ |
| 158 | + cumulants of order 4 of a one sided BIG distribution |
| 159 | +
|
| 160 | + Args: |
| 161 | + omega (float): omega |
| 162 | + eta (float): eta |
| 163 | + p (float): p |
| 164 | +
|
| 165 | + Returns: |
| 166 | + float: c4 |
| 167 | + """ |
| 168 | + polynom = ( |
| 169 | + 2 * self.ratio_bessel(omega, p) ** 3 |
| 170 | + - (6 * (p + 1) / omega) * self.ratio_bessel(omega, p) ** 2 |
| 171 | + + ((4 * (p + 1) * (p + 2) / omega**2) - 2) * self.ratio_bessel(omega, p) |
| 172 | + + 2 * (p + 1) / omega |
| 173 | + ) |
| 174 | + return polynom * eta**4 |
| 175 | + |
| 176 | + def cumulants_gen( |
| 177 | + self, |
| 178 | + order: int, |
| 179 | + ) -> float: |
| 180 | + """ |
| 181 | + compute cumulants of order "order" |
| 182 | +
|
| 183 | + Args: |
| 184 | + order (int): order of the cumulant |
| 185 | +
|
| 186 | + Raises: |
| 187 | + NotImplementedError: if order > 4 |
| 188 | +
|
| 189 | + Returns: |
| 190 | + cumulant (float) |
| 191 | + """ |
| 192 | + a_p, b_p, p_p = self.a_p, self.b_p, self.p_p |
| 193 | + a_m, b_m, p_m = self.a_m, self.b_m, self.p_m |
| 194 | + |
| 195 | + omega_p = (a_p * b_p) ** 0.5 |
| 196 | + omega_m = (a_m * b_m) ** 0.5 |
| 197 | + eta_p = (a_p / b_p) ** (-0.5) |
| 198 | + eta_m = (a_m / b_m) ** (-0.5) |
| 199 | + |
| 200 | + match order: |
| 201 | + case 1: |
| 202 | + return self.c1(omega_p, eta_p, p_p) - self.c1(omega_m, eta_m, p_m) |
| 203 | + case 2: |
| 204 | + return self.c2(omega_p, eta_p, p_p) + self.c2(omega_m, eta_m, p_m) |
| 205 | + case 3: |
| 206 | + return self.c3(omega_p, eta_p, p_p) - self.c3(omega_m, eta_m, p_m) |
| 207 | + case 4: |
| 208 | + return self.c4(omega_p, eta_p, p_p) + self.c4(omega_m, eta_m, p_m) |
| 209 | + case _: |
| 210 | + raise NotImplementedError |
| 211 | + |
| 212 | + def cumulants(self, T: float) -> Cumulants: |
| 213 | + """ |
| 214 | + Evaluate the cumulants of the model at a given time. |
| 215 | + This is useful e.g. to figure out integration bounds etc |
| 216 | + during pricing |
| 217 | + :param T: float, time to maturity (time at which cumulants are evaluated) |
| 218 | + :return: Cumulants object |
| 219 | + """ |
| 220 | + rn_drift = self.risk_neutral_log_drift() |
| 221 | + |
| 222 | + return Cumulants( |
| 223 | + T=T, |
| 224 | + rn_drift=rn_drift, |
| 225 | + c1=T * (rn_drift + self.cumulants_gen(1)), |
| 226 | + c2=T * self.cumulants_gen(2), |
| 227 | + c4=T * self.cumulants_gen(4), |
| 228 | + ) |
| 229 | + |
| 230 | + def symbol(self, xi: Union[float, np.ndarray]): |
| 231 | + """ |
| 232 | + Levy symbol, uniquely defines Characteristic Function via: |
| 233 | + chf(T,xi) = exp(T*symbol(xi)), for all T>=0 |
| 234 | + :param xi: np.ndarray or float, points in frequency domain |
| 235 | + :return: np.ndarray or float, symbol evaluated at input points in frequency domain |
| 236 | + """ |
| 237 | + a_p, b_p, p_p = self.a_p, self.b_p, self.p_p |
| 238 | + a_m, b_m, p_m = self.a_m, self.b_m, self.p_m |
| 239 | + rn_drift = self.risk_neutral_log_drift() |
| 240 | + |
| 241 | + return 1j * xi * rn_drift + np.log( |
| 242 | + (a_p / (a_p - 2j * xi)) ** (p_p / 2) |
| 243 | + * scipy.special.kv(p_p, (b_p * (a_p - 2j * xi))) |
| 244 | + / scipy.special.kv(p_p, (b_p * a_p)) |
| 245 | + * (a_m / (a_m + 2j * xi)) ** (p_m / 2) |
| 246 | + * scipy.special.kv(p_m, (b_m * (a_m - 2j * xi))) |
| 247 | + / scipy.special.kv(p_m, (b_m * a_m)) |
| 248 | + ) |
| 249 | + |
| 250 | + def convexity_correction(self) -> float: |
| 251 | + """ |
| 252 | + Computes the convexity correction for the Levy model, |
| 253 | + added to log process drift to ensure |
| 254 | + risk neutrality |
| 255 | + """ |
| 256 | + a_p, b_p, p_p = self.a_p, self.b_p, self.p_p |
| 257 | + a_m, b_m, p_m = self.a_m, self.b_m, self.p_m |
| 258 | + |
| 259 | + return -np.log( |
| 260 | + (a_p / (a_p - 2)) ** (p_p / 2) |
| 261 | + * scipy.special.kv(p_p, (b_p * (a_p - 2))) |
| 262 | + / scipy.special.kv(p_p, (b_p * a_p)) |
| 263 | + * (a_m / (a_m + 2)) ** (p_m / 2) |
| 264 | + * scipy.special.kv(p_m, (b_m * (a_m + 2))) |
| 265 | + / scipy.special.kv(p_m, (b_m * a_m)) |
| 266 | + ) |
| 267 | + |
| 268 | + ############################################# |
| 269 | + ### Calibration Interface Implementation ### |
| 270 | + ############################################# |
| 271 | + |
| 272 | + def num_params(self) -> int: |
| 273 | + return 6 |
| 274 | + |
| 275 | + def param_bounds(self) -> Optional[List[Tuple]]: |
| 276 | + return [ |
| 277 | + (2, np.inf), |
| 278 | + (0, np.inf), |
| 279 | + (-np.inf, np.inf), |
| 280 | + (0, np.inf), |
| 281 | + (0, np.inf), |
| 282 | + (-np.inf, np.inf), |
| 283 | + ] |
| 284 | + |
| 285 | + def default_params(self) -> Optional[np.ndarray]: |
| 286 | + return np.asarray([500, 0.05, 2, 300, 0.03, 2]) |
0 commit comments