- March 2025: StarVector Accepted at CVPR 2025,
StarVector is a multimodal vision-language model for Scalable Vector Graphics (SVG) generation. It can be used to perform image2SVG and text2SVG generation. We pose image generation as a code generation task, using the power of multimodal VLMs
Abstract: Scalable Vector Graphics (SVGs) are vital for modern image rendering due to their scalability and versatility. Previous SVG generation methods have focused on curve-based vectorization, lacking semantic understanding, often producing artifacts, and struggling with SVG primitives beyond \textit{path} curves. To address these issues, we introduce StarVector, a multimodal large language model for SVG generation. It performs image vectorization by understanding image semantics and using SVG primitives for compact, precise outputs. Unlike traditional methods, StarVector works directly in the SVG code space, leveraging visual understanding to apply accurate SVG primitives. To train StarVector, we create SVG-Stack, a diverse dataset of 2M samples that enables generalization across vectorization tasks and precise use of primitives like ellipses, polygons, and text. We address challenges in SVG evaluation, showing that pixel-based metrics like MSE fail to capture the unique qualities of vector graphics. We introduce SVG-Bench, a benchmark across 10 datasets, and 3 tasks: Image-to-SVG, Text-to-SVG generation, and diagram generation. Using this setup, StarVector achieves state-of-the-art performance, producing more compact and semantically rich SVGs.
StarVector uses a multimodal architecture to process images and text. When performing Image-to-SVG (or image vectorization), the image is projected into visual tokens, and SVG code is generated. When performing Text-to-SVG, the model only recieves the text instruction (no image is provided), and a novel SVG is created. The LLM is based of StarCoder, which we leverage to transfer coding skills to SVG generation.
- πΏ Installation
- ποΈ Quick Start - Image2SVG Generation
- π¨ Models
- π Datasets
- ποΈββοΈ Training
- π Evaluation on SVG-Bench
- 𧩠Demo
- π Citation
- π License
- Clone this repository and navigate to star-vector folder
git clone https://github.com/joanrod/star-vector.git
cd star-vector
- Install Package
conda create -n starvector python=3.11.3 -y
conda activate starvector
pip install --upgrade pip # enable PEP 660 support
pip install -e .
- Install additional packages for training
pip install -e ".[train]"
git pull
pip install -e .
from PIL import Image
from starvector.model.starvector_arch import StarVectorForCausalLM
from starvector.data.util import process_and_rasterize_svg
model_name = "starvector/starvector-8b-im2svg"
starvector = StarVectorForCausalLM.from_pretrained(model_name)
starvector.cuda()
starvector.eval()
image_pil = Image.open('assets/examples/sample-0.png')
image = starvector.process_images([image_pil])[0].cuda()
batch = {"image": image}
raw_svg = starvector.generate_im2svg(batch, max_length=1000)[0]
svg, raster_image = process_and_rasterize_svg(raw_svg)
from PIL import Image
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoProcessor
from starvector.data.util import process_and_rasterize_svg
import torch
model_name = "starvector/starvector-8b-im2svg"
starvector = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16, trust_remote_code=True)
processor = starvector.model.processor
tokenizer = starvector.model.svg_transformer.tokenizer
starvector.cuda()
starvector.eval()
image_pil = Image.open('assets/examples/sample-18.png')
image = processor(image_pil, return_tensors="pt")['pixel_values'].cuda()
if not image.shape[0] == 1:
image = image.squeeze(0)
batch = {"image": image}
raw_svg = starvector.generate_im2svg(batch, max_length=4000)[0]
svg, raster_image = process_and_rasterize_svg(raw_svg)
We provide Hugging Face π€ model checkpoints for image2SVG vectorization, for π« StarVector-8B and π« StarVector-1B. These are the results on SVG-Bench, using the DinoScore metric.
Method | SVG-Stack | SVG-Fonts | SVG-Icons | SVG-Emoji | SVG-Diagrams |
---|---|---|---|---|---|
AutoTrace | 0.942 | 0.954 | 0.946 | 0.975 | 0.874 |
Potrace | 0.898 | 0.967 | 0.972 | 0.882 | 0.875 |
VTracer | 0.954 | 0.964 | 0.940 | 0.981 | 0.882 |
Im2Vec | 0.692 | 0.733 | 0.754 | 0.732 | - |
LIVE | 0.934 | 0.956 | 0.959 | 0.969 | 0.870 |
DiffVG | 0.810 | 0.821 | 0.952 | 0.814 | 0.822 |
GPT-4-V | 0.852 | 0.842 | 0.848 | 0.850 | - |
π« StarVector-1B (π€ Link) | 0.926 | 0.978 | 0.975 | 0.929 | 0.943 |
π« StarVector-8B (π€ Link) | 0.966 | 0.982 | 0.984 | 0.981 | 0.959 |
Note: StarVector models will not work for natural images or illustrations, as they have not been trained on those images. They excel in vectorizing icons, logotypes, technical diagrams, graphs, and charts.
SVG-Bench is a benchmark for evaluating SVG generation models. It contains 10 datasets, and 3 tasks: Image-to-SVG, Text-to-SVG, and Diagram-to-SVG.
See our Huggingface π€ Dataset Collection
Dataset | Train | Val | Test | Token Length | SVG Primitives | Annotation |
---|---|---|---|---|---|---|
SVG-Stack (π€ Link) | 2.1M | 108k | 5.7k | 1,822 Β± 1,808 | All | Captions |
SVG-Stack_sim (π€ Link) | 601k | 30.1k | 1.5k | 2k Β± 918 | Vector path | - |
SVG-Diagrams (π€ Link) | - | - | 472 | 3,486 Β± 1,918 | All | - |
SVG-Fonts (π€ Link) | 1.8M | 91.5k | 4.8k | 2,121 Β± 1,868 | Vector path | Font letter |
SVG-Fonts_sim (π€ Link) | 1.4M | 71.7k | 3.7k | 1,722 Β± 723 | Vector path | Font letter |
SVG-Emoji (π€ Link) | 8.7k | 667 | 668 | 2,551 Β± 1,805 | All | - |
SVG-Emoji_sim (π€ Link) | 580 | 57 | 96 | 2,448 Β± 1,026 | Vector Path | - |
SVG-Icons (π€ Link) | 80.4k | 6.2k | 2.4k | 2,449 Β± 1,543 | Vector path | - |
SVG-Icons_sim (π€ Link) | 80,435 | 2,836 | 1,277 | 2,005 Β± 824 | Vector path | - |
SVG-FIGR (π€ Link) | 270k | 27k | 3k | 5,342 Β± 2,345 | Vector path | Class, Caption |
We offer a summary of statistics about the datasets used in our training and evaluation experiments. This datasets are included in SVG-Bench. The subscript sim stands for the simplified version of the dataset, as required by some baselines.
pip install -e ".[train]"
We recommend setting the following environment variables:
export HF_HOME=<path to the folder where you want to store the models>
export HF_TOKEN=<your huggingface token>
export WANDB_API_KEY=<your wandb token>
export OUTPUT_DIR=<path/to/output>
cd the root of the repository.
cd star-vector
We have different training approaches for StarVector-1B and StarVector-8B. StarVector-1B can be trained using Deepspeed, while StarVector-8B requires FSDP.
You can use the following command to train StarVector-1B on SVG-Stack for the Image2SVG vectorization task, using Deepspeed and Accelerate
# StarVector-1B
accelerate launch --config_file configs/accelerate/deepspeed-8-gpu.yaml starvector/train/train.py config=configs/models/starvector-1b/im2svg-stack.yaml
You can use the following command to train StarVector-8B on SVG-Stack for the Image2SVG vectorization task, using FSDP and Accelerate. We provide the torchrun command to support multi-nodes and multi-GPUs.
# StarVector-8B
torchrun \
--nproc-per-node=8 \
--nnodes=1 \
starvector/train/train.py \
config=configs/models/starvector-8b/im2svg-stack.yaml
After pretraining StarVector on image vectorization, we finetune it on additional SVG tasks like Text2SVG, and SVG-Bench datasets.
# StarVector-1B
accelerate launch --config_file config/accelerate/deepspeed-8-gpu.yaml starvector/train/train.py config=configs/models/starvector-1b/text2svg-stack.yaml
# StarVector-8B
torchrun \
--nproc-per-node=8 \
--nnodes=1 \
starvector/train/train.py \
config=configs/models/starvector-8b/text2svg-stack.yaml
# StarVector-1B
accelerate launch --config_file config/accelerate/deepspeed-8-gpu.yaml starvector/train/train.py config=configs/models/starvector-1b/im2svg-{fonts,icons,emoji}.yaml
# StarVector-8B
torchrun \
--nproc-per-node=8 \
--nnodes=1 \
starvector/train/train.py \
config=configs/models/starvector-8b/im2svg-{fonts,icons,emoji}.yaml
We also provide shell scripts in scripts/train/*
We validate StarVector on β SVG-Bench Benchmark. We provide the SVGValidator class that allows you to run StarVector using 1) the HuggingFace generation backend or 2) the VLLM backend. The later is substantially faster thanks to the use of Paged Attention.
Let's start with the evaluation for StarVector-1B and StarVector-8B on SVG-Stack, using the HuggingFace generation backend (StarVectorHFAPIValidator). To override the input arguments, you can add cli args following the yaml file structure.
# StarVector-1B on SVG-Stack, using the HuggingFace backend
python starvector/validation/validate.py \
config=configs/generation/hf/starvector-1b/im2svg.yaml \
dataset.name=starvector/svg-stack
# StarVector-8B on SVG-Stack, using the vanilla HuggingFace generation API
python starvector/validation/validate.py \
config=configs/generation/hf/starvector-8b/im2svg.yaml \
dataset.name=starvector/svg-stack
For using the vLLM backend (StarVectorVLLMAPIValidator), first install our StarVector fork of VLLM, here.
git clone https://github.com/starvector/vllm.git
cd vllm
pip install -e .
Then, launch the using the vllm config file (it uses StarVectorVLLMValidator):
# StarVector-1B
python starvector/validation/validate.py \
config=configs/generation/vllm/starvector-1b/im2svg.yaml \
dataset.name=starvector/svg-stack
# StarVector-8B
python starvector/validation/validate.py \
config=configs/generation/vllm/starvector-8b/im2svg.yaml \
dataset.name=starvector/svg-stack
We provide evaluation scripts in scripts/eval/*
The demo provides two options for converting images to SVG code:
- HuggingFace generation functionality
- VLLM (recommended) - offers faster generation speed
We provide a Gradio web UI for you to play with our model.
python -m starvector.serve.controller --host 0.0.0.0 --port 10000
python -m starvector.serve.gradio_web_server --controller http://localhost:10000 --model-list-mode reload --port 7000
You just launched the Gradio web interface. Now, you can open the web interface with the URL printed on the screen. You may notice that there is no model in the model list. Do not worry, as we have not launched any model worker yet. It will be automatically updated when you launch a model worker.
This is the actual worker that performs the inference on the GPU. Each worker is responsible for a single model specified in --model-path
.
python -m starvector.serve.model_worker --host 0.0.0.0 --controller http://localhost:10000 --port 40000 --worker http://localhost:40000 --model-path joanrodai/starvector-1.4b
Wait until the process finishes loading the model and you see "Uvicorn running on ...". Now, refresh your Gradio web UI, and you will see the model you just launched in the model list.
You can launch as many workers as you want, and compare between different model checkpoints in the same Gradio interface. Please keep the --controller
the same, and modify the --port
and --worker
to a different port number for each worker.
vllm serve starvector/starvector-8b-im2svg --chat-template configs/chat-template.jinja --trust-remote-code --port 8001 --max-model-len 16000
python -m starvector.serve.model_worker --host 0.0.0.0 --controller http://localhost:10000 --port <different from 40000, say 40001> --worker http://localhost:<change accordingly, i.e. 40001> --model-path <ckpt2>
- Remember to clone the starvector/vllm fork (it has modifications for starvector).
git clone https://github.com/starvector/vllm.git
cd vllm
pip install -e .
- Call this to launch the VLLM endpoint
vllm serve starvector/starvector-1b-im2svg --chat-template configs/chat-template.jinja --trust-remote-code --port 8000 --max-model-len 8192
- Create the demo for VLLM
python -m starvector.serve.vllm_api_gradio.controller --host 0.0.0.0 --port 10000
python -m starvector.serve.vllm_api_gradio.gradio_web_server --controller http://localhost:10000 --model-list-mode reload --port 7000
python -m starvector.serve.vllm_api_gradio.model_worker --host 0.0.0.0 --controller http://localhost:10000 --port 40000 --worker http://localhost:40000 --model-name starvector/starvector-1b-im2svg --vllm-base-url http://localhost:8000
- Add more models by serving them with VLLM and calling a new model worker
vllm serve starvector/starvector-8b-im2svg --chat-template configs/chat-template.jinja --trust-remote-code --port 8001 --max-model-len 16384
python -m starvector.serve.vllm_api_gradio.model_worker --host 0.0.0.0 --controller http://localhost:10000 --port 40001 --worker http://localhost:40001 --model-name starvector/starvector-8b-im2svg --vllm-base-url http://localhost:8001
@misc{rodriguez2024starvector,
title={StarVector: Generating Scalable Vector Graphics Code from Images and Text},
author={Juan A. Rodriguez and Abhay Puri and Shubham Agarwal and Issam H. Laradji and Pau Rodriguez and Sai Rajeswar and David Vazquez and Christopher Pal and Marco Pedersoli},
year={2024},
eprint={2312.11556},
archivePrefix={arXiv},
primaryClass={cs.CV},
url={https://arxiv.org/abs/2312.11556},
}
This project is licensed under the Apache License, Version 2.0 - see the LICENSE file for details.