🌍🤖 AI-powered multilingual research assistant for instant web search and summaries ✨
agentic-ai-multilang-research is an advanced, agentic research assistant that empowers you to ask questions in any language and receive concise, insightful answers—instantly.
It leverages state-of-the-art language models, agentic workflows, and real-time web search to deliver up-to-date, multilingual research summaries.
- Ask in any language: The assistant detects your language and responds accordingly.
- Always up-to-date: Integrates with Google Search for the latest information.
- Powered by LLMs: Uses Ollama and LangChain for local, private, and fast LLM inference.
- Agentic reasoning: Employs graph-based agent workflows for multi-step synthesis.
- 🌐 Multilingual Input & Output: Seamlessly handles questions and answers in any language.
- 🔍 Automated Web Search: Retrieves and summarizes relevant web content in your language.
- 🧠 Agentic Reasoning: Uses graph-based workflows for advanced, multi-step synthesis.
- 📝 Concise Summaries: Delivers clear, actionable answers using LLM-powered summarization.
- 🛠️ Customizable & Modular: Easily swap models, search providers, or summarization logic.
- 🏃 Runs Locally: All LLM inference is performed locally via Ollama for privacy and speed.
-
Clone the repository:
git clone [email protected]:josego85/agentic-ai-multilang-research.git cd agentic-ai-multilang-research
-
Create and activate a virtual environment:
python -m venv venv source venv/bin/activate
-
Install dependencies:
pip install --upgrade pip pip install -r requirements.txt
-
Download an LLM model with Ollama:
ollama pull gemma3:1b
(Or use another supported model, e.g., llama2)
-
Configure API keys:
This project requires a SerpAPI key for Google Search integration.
Visit SerpAPI to create an account and obtain your API key.
Add your credentials to a.env
file in the project root:SERPAPI_API_KEY=your_api_key_here
-
Run the assistant:
python main.py
python main.py
Sample interaction:
AI Agent: Ask your question in any language and get a summarized answer.
Your question:
--> Was ist der Einfluss von KI-Agenten auf die Arbeitswelt?
🔍 Searching the web for: Was ist der Einfluss von KI-Agenten auf die Arbeitswelt? (lang=de)
⏱ Model response time: 3.92 seconds
⏱ Model response time: 5.96 seconds
Final Response:
Laut der Zusammenfassung hat der Einfluss von KI-Agenten auf die Arbeitswelt folgende Auswirkungen:
* **Aufgabeübernahme:** KI-Agenten übernehmen Aufgaben, die bisher menschliche Mitarbeiter erledigten.
* **Einstiegshürden senken:** Sie machen es einfacher, neue Berufe zu erlernen und zu ergreifen.
Kurz gesagt, KI-Agenten verändern die Arbeitswelt, indem sie Aufgaben automatisieren und so neue Möglichkeiten für Menschen schaffen.
Try questions in any language:
- English:
How will AI agents impact the future of education?
- Español:
¿Qué impacto tendrán los agentes de IA en la medicina moderna?
- Français:
Quel est l'effet des agents IA sur la productivité des entreprises ?
main.py
— Entry point; handles user queries and displays responses.agent/graph.py
— Defines the agentic workflow and orchestration logic.service/llm_agent.py
— LLM interface using LangChain and Ollama.service/summarize.py
— Summarization service for multilingual output..env
— (Optional) API keys and environment variables.
-
Model Selection:
Change the model name inservice/llm_agent.py
to use a different LLM with Ollama. -
Environment Variables:
Place your.env
file in the project root with any required API keys or configuration.
- Python 3.11+
- Ollama installed and running for local LLM inference
Contributions, issues, and feature requests are welcome!
Feel free to open an issue or submit a pull request.
GNU General Public License v3.0
For questions or support, open an issue on GitHub.