Do you want to know about statistics, mathematics, data science and deep learning? Do you want to become a data scientist using R, Python or Julia? These are some of the resources that will help you.
| Engine | Recommended IDE | Alternative IDEs |
|---|---|---|
| R | RStudio | Dataiku |
| Python | Anaconda | Dataiku |
| Julia | Jupyter Notebook | Dataiku, Anaconda |
With the swirl R package you can learn R programming and data science. Open RStudio and type the following into the console:
install.packages("swirl")
Then load the package:
library(swirl)
For newbies we recommend the course "R Programming":
install_course("R Programming")
swirl()
Then you can continue wiht other courses for data cleasning, exploratory data analysis, statistics and data analysis. Podéis profundizar después con:
install_course("Getting_and_Cleaning_Data")
install_course("Exploratory_Data_Analysis")
install_course("Open_Intro/Overview_of_Statistics")
install_course("Data_Analysis")
- Rdimtools: Dimension Reduction and Estimation Methods
- mlr: Machine Learning in R
- caret: Classification and Regression Training, a book for The caret Package and caretEnsemble: Ensembles of Caret Models
- lime: Local Interpretable Model-Agnostic Explanations
- ShapleyR
- breakDown: Model Agnostic Explainers for Individual Predictions and https://pbiecek.github.io/breakDown/
- DALEX: Descriptive mAchine Learning EXplanations and https://pbiecek.github.io/DALEX_docs/
- ceterisParibus and https://pbiecek.github.io/ceterisParibus/index.html
- RStudio IDE Cheatsheet
- R Reference Card
- Rmarkdown Reference Guide
- Rmarkdown Cheatsheet Guide
- Data Wrangling Cheatsheet
- Shiny Cheatsheet
- Devtools Cheatsheet
- Data Visualization Cheatsheet with ggplot2
- UCL Course on RL
- DeepMind/UCL course on RL
- Learn with Google AI
- https://www.yan-holtz.com/teaching
- https://learningstatisticswithr.com
- https://m-clark.github.io/mixed-models-with-R/
- https://noamross.github.io/gams-in-r-course/
- https://missing.csail.mit.edu
- Stephen Boyd and Lieven Vandenberghe. 2014. Convex Optimization. Cambridge University Press
- Allen B. 2012. Downey. Think Bayes. O'Reilly
- Intuitive ML and Big Data in C++, Scala, Java and Python
- The Little Book of LDA
- Data Science Live Book
- Tour of Machine Learning Algorithms
- Evaluation of Deep Learning Toolkits
- List of recommender systems
- Interactive Periodic Table of Machine Learning Libraries
- Google's Seedbank
- Google's Distill
- Reinforcement Learning: an Overview
- Enigma
- Kaggle Datasets
- Yahoo Datasets
- Million Songs Dataset
- Open Football
- Global Earthquake Archive
- R Datasets
- Rstudio Babynames
- Rstudio Fueleconomy
- Rstudio NASA Weather
- Rstudio NYC Flights
- DataMartker Time Series Data Library
- Datasets from the book: A Handbook of Small Data Sets
- M&M Data
- Marvel Universe Social Graph
- UCI Network Data Repository
- UC Irvine Machine Learning Repository
- The Mondial Database
- Europa Open Data
- USA Data Gov
- Facebook Graph API
- Quandl
- Dbpedia
- Stanford Large Network Dataset Collection
- UCI ML Repository
- Reddit Datasets
- The Stanford Question Answering Dataset
- Trump Speeches
- LAMBADA Dataset
- University of Edinburugh - School of Informatics - Data Mining datsets
- Time Series Data Library - Data Market
- Data for Everyone - Crowdflower
- Datasets from MILA Lab - University of Montreal, Canada
- Open Data Stack Exchange
- dslabs package
- The Tate Collection
- Data Portals
- Pretty Awesome Lists
- Awesome Big Data
- Awesome Big Data Ecosystem
- Awesome Hadoop
- Awesome Data Science
- Awesome Analytics
- Awesome Machine Learning
- Awesome Dataviz
- Awesome python
- Awesome R
- Awesome Public Datasets
- Awesome Responsible AI