Bridge the Gap Between Ecological Research and Impactful Communication
EcoHack-2025 - AI & LLM Hackathon for Applications in Evidence-based Ecological Research & Practice
Ecologists face critical challenges in research communication:
- Time-Consuming Workflows: 40+ hours spent monthly converting complex data into presentations
- Audience Mismatch: One-size-fits-all slides fail researchers, practitioners, and funders alike
- Visualization Bottlenecks: Manual extraction of 85%+ figures/tables from PDF manuscripts
- Draft Limitations: No tools adapt to preliminary abstracts/supplementary materials
-
Audience-Specific Adaptation
Tailor content depth for:- Researchers (Technical details)
- Practitioners (Actionable insights)
- Funding Bodies (Impact metrics)
-
Intelligent Content Extraction
graph LR A[PDF/Abstract] --> B[PyMuPDF Extraction] B --> C{Component Type?} C -->|Figure| D[BLIP Captioning] C -->|Table| E[GPT-4 Analysis] C -->|Text| F[FAISS Vectorization]
-
Draft-Friendly Processing
Generate complete presentations from:- Partial manuscripts
- Conference abstracts
- Supplementary datasets
Category | Capabilities |
---|---|
Input Flexibility | PDFs • DOCX • PPTX • TXT • Raw abstracts |
AI Core | GPT-4o • Mixtral-8x7B • BLIP models • FAISS semantic search |
Ecology Focus | Term validation • Sustainability metrics • Domain-specific visual themes |
Output Quality | APA/MLA citations • Automated captions • 4K-ready vector graphics |
git clone https://github.com/javadr/AutoDeckAI/
cd AutoDeckAI
python -m venv ecoenv && source ecoenv/bin/activate
pip install -r requirements.txt
Essential Dependencies:
pymupdf>=1.22.3 # PDF extraction
langchain>=0.1.5 # AI pipelines
faiss-cpu>=1.7.4 # Vector search
python-pptx>=0.6.21 # PPTX generation
export OPENAI_API_KEY="sk-your-key" # For GPT-4 integration
export HF_TOKEN="hf-your-token" # Optional for open-source models
graph TD
A[User Input] --> B{Input Type?}
B -->|PDF/DOCX| C[PyMuPDF Extraction]
B -->|Abstract| D[Direct Processing]
C --> E[Component Classification]
E --> F[Figure/Table Detection]
F --> G[Caption Generation]
G --> H[FAISS Vector Store]
D --> H
H --> I[Audience-Specific Prompting]
I --> J[Slide Generation]
J --> K[PPTX Assembly]
K --> L[Output Validation]
L --> M[Download Ready]
- Classroom Mode: Generate lecture decks from multiple papers
- Modular Decks: Create reusable slide components
- AI Assistant: Chat-based refinement interface
- Visual-First Mode: Image-centric slide layouts
Core Developers:
- Hrishikesh Jadhav (University of Passau)
- Javad Razavian (University of Qom)
- Moiz Khan Sherwani (University of Copenhagen)
Project Links:
- Code Repository
- Demo Video
- Hosted Application: AutoDeckAI Cloud
MIT Licensed - View Full Terms
Empowering 1000+ Ecologists Worldwide
Report Issues •
Request Features •
Cite Our Work