Transform your content operations with AI-powered tools for Kontent.ai. Create, manage, and explore your structured content through natural language conversations in your favorite AI-enabled editor.
Kontent.ai MCP Server implements the Model Context Protocol to connect your Kontent.ai projects with AI tools like Claude, Cursor, and VS Code. It enables AI models to understand your content structure and perform operations through natural language instructions.
- π Rapid prototyping: Transform your diagrams into live content models in seconds
- π Data Visualisation: Visualise your content model in any format you want
- π Quickstart
- π οΈ Available Tools
- βοΈ Configuration
- π Transport Options
- π» Development
- License
Before you can use the MCP server, you need:
- A Kontent.ai account - Sign up if you don't have an account.
- A project - Create a project to work with.
- Management API key - Create a Management API key with appropriate permissions.
- Environment ID - Get your environment ID.
You can run the Kontent.ai MCP Server with npx:
npx @kontent-ai/mcp-server@latest stdio
npx @kontent-ai/mcp-server@latest sse
- get-type-mapi β Get a specific content type by codename
- list-content-types-mapi β List all content types in the environment
- add-content-type-mapi β Create a new content type with elements
- get-type-snippet-mapi β Get a specific content type snippet by codename
- list-content-type-snippets-mapi β List all content type snippets
- add-content-type-snippet-mapi β Create a new content type snippet
- get-taxonomy-group-mapi β Get a specific taxonomy group by codename
- list-taxonomy-groups-mapi β List all taxonomy groups
- add-taxonomy-group-mapi β Create a new taxonomy group with terms
- list-languages-mapi β List all languages configured in the environment
The server requires the following environment variables:
Variable | Description | Required |
---|---|---|
KONTENT_API_KEY | Your Kontent.ai Management API key | β |
KONTENT_ENVIRONMENT_ID | Your environment ID | β |
PORT | Port for SSE transport (defaults to 3001) | β |
To run the server with STDIO transport, configure your MCP client with:
{
"kontent-ai-stdio": {
"command": "npx",
"args": ["@kontent-ai/mcp-server@latest", "stdio"],
"env": {
"KONTENT_API_KEY": "<management-api-key>",
"KONTENT_ENVIRONMENT_ID": "<environment-id>"
}
}
}
For SSE transport, first start the server:
npx @kontent-ai/mcp-server@latest sse
With environment variables in a .env
file, or otherwise accessible to the process:
KONTENT_API_KEY=<management-api-key>
KONTENT_ENVIRONMENT_ID=<environment-id>
PORT=3001 # optional, defaults to 3001
Then configure your MCP client:
{
"kontent-ai-sse": {
"url": "http://localhost:3001/sse"
}
}
# Clone the repository
git clone https://github.com/kontent-ai/mcp-server.git
cd mcp-server
# Install dependencies
npm ci
# Build the project
npm run build
# Start the server
npm run start:sse # For SSE transport
npm run start:stdio # For STDIO transport
src/
- Source codetools/
- MCP tool implementationsclients/
- Kontent.ai API client setupschemas/
- Data validation schemasserver.ts
- Main server setup and tool registrationbin.ts
- Single entry point that handles both transport types
For debugging, you can use the MCP inspector:
npx @modelcontextprotocol/inspector -e KONTENT_API_KEY=<key> -e KONTENT_ENVIRONMENT_ID=<env-id> node path/to/build/bin.js
Or use the MCP inspector on a running sse server:
npx @modelcontextprotocol/inspector
This provides a web interface for inspecting and testing the available tools.
MIT