Skip to content

implemented gftt_response #306

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 7 commits into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions crates/kornia-imgproc/Cargo.toml
Original file line number Diff line number Diff line change
Expand Up @@ -14,6 +14,7 @@ version.workspace = true
[dependencies]
fast_image_resize = "5.1.0"
kornia-tensor = { workspace = true }
kornia-tensor-ops = { workspace = true }
kornia-image = { workspace = true }
num-traits = { workspace = true }
rayon = "1.10"
Expand Down
36 changes: 34 additions & 2 deletions crates/kornia-imgproc/benches/bench_features.rs
Original file line number Diff line number Diff line change
Expand Up @@ -9,7 +9,7 @@ use rand::Rng;
fn bench_fast_corner_detect(c: &mut Criterion) {
let mut group = c.benchmark_group("FastCornerDetect");

let img_rgb8 = io::read_image_any_rgb8("/home/edgar/Downloads/kodim08_grayscale.png").unwrap();
let img_rgb8 = io::read_image_any_rgb8("../../tests/data/dog-rgb8.png").unwrap();

let new_size = [1920, 1080].into();
let mut img_resized = Image::from_size_val(new_size, 0).unwrap();
Expand All @@ -32,6 +32,38 @@ fn bench_fast_corner_detect(c: &mut Criterion) {
);
}

fn bench_gftt_response(c: &mut Criterion) {
let mut group = c.benchmark_group("Features");
let mut rng = rand::thread_rng();

for (width, height) in [(224, 224), (512, 512), (1920, 1080)].iter() {
group.throughput(criterion::Throughput::Elements((*width * *height) as u64));

let parameter_string = format!("{}x{}", width, height);

// input image
let image_data: Vec<f32> = (0..(*width * *height))
.map(|_| rng.gen_range(0.0..1.0))
.collect();
let image_size = [*width, *height].into();

let image_f32: Image<f32, 1> = Image::new(image_size, image_data).unwrap();

// output image
let response_f32: Image<f32, 1> = Image::from_size_val(image_size, 0.0).unwrap();

group.bench_with_input(
BenchmarkId::new("gftt", &parameter_string),
&(&image_f32, &response_f32),
|b, i| {
let (src, mut dst) = (i.0, i.1.clone());
b.iter(|| black_box(gftt_response(src, &mut dst)))
},
);
}
group.finish();
}

fn bench_harris_response(c: &mut Criterion) {
let mut group = c.benchmark_group("Features");
let mut rng = rand::thread_rng();
Expand Down Expand Up @@ -100,7 +132,7 @@ fn bench_dog_response(c: &mut Criterion) {
criterion_group!(
name = benches;
config = Criterion::default().warm_up_time(std::time::Duration::new(10, 0));
targets = bench_harris_response, bench_dog_response, bench_fast_corner_detect
targets = bench_harris_response, bench_dog_response, bench_fast_corner_detect, bench_gftt_response
);
criterion_main!(benches);

Expand Down
98 changes: 97 additions & 1 deletion crates/kornia-imgproc/src/features/responses.rs
Original file line number Diff line number Diff line change
@@ -1,5 +1,6 @@
use crate::filter::gaussian_blur;
use crate::filter::{gaussian_blur, spatial_gradient_float_parallel_row};
use kornia_image::{Image, ImageError, ImageSize};
use kornia_tensor_ops::TensorOps;
use rayon::prelude::*;

/// Method to calculate gradient for feature response
Expand All @@ -24,6 +25,64 @@ fn _get_kernel_size(sigma: f32) -> usize {

ksize
}
///Compute the Shi-Tomasi cornerness function.
///
/// The Shi-Tomasi cornerness function is computed as the minimum eigenvalue of the gradient matrix.
///
/// Args:
/// src: The source image.
/// dst: The destination image.
pub fn gftt_response(src: &Image<f32, 1>, dst: &mut Image<f32, 1>) -> Result<(), ImageError> {
if src.size() != dst.size() {
return Err(ImageError::InvalidImageSize(
src.cols(),
src.rows(),
dst.cols(),
dst.rows(),
));
}
let size = src.size();
let mut dx = Image::from_size_val(size, 0.0)?;
let mut dy = Image::from_size_val(size, 0.0)?;

let mut dx2_g: Image<f32, 1> = Image::from_size_val(size, 0.0)?;
let mut dy2_g: Image<f32, 1> = Image::from_size_val(size, 0.0)?;
let mut dxy_g: Image<f32, 1> = Image::from_size_val(size, 0.0)?;
spatial_gradient_float_parallel_row(src, &mut dx, &mut dy)?;

let dx2 = Image(dx.mul(&dx).unwrap());
let dy2 = Image(dy.mul(&dy).unwrap());
let dxy = Image(dx.mul(&dy).unwrap());

gaussian_blur(&dx2, &mut dx2_g, (7, 7), (1.0, 1.0))?;
gaussian_blur(&dy2, &mut dy2_g, (7, 7), (1.0, 1.0))?;
gaussian_blur(&dxy, &mut dxy_g, (7, 7), (1.0, 1.0))?;
unsafe {
let det = dx2_g
.mul(&dy2_g)
.unwrap_unchecked()
.sub(&dxy_g.mul(&dxy_g).unwrap_unchecked())
.unwrap_unchecked();
let trace = dx2_g.add(&dy2_g).unwrap_unchecked();

let trace_sq = trace.mul(&trace).unwrap_unchecked();
let four_det = det.mul_scalar(4.0);
let discr = trace_sq.sub(&four_det).unwrap_unchecked().abs().powf(0.5);
let half = 0.5;
let e1 = trace.add(&discr).unwrap_unchecked().mul_scalar(half);
let e2 = trace.sub(&discr).unwrap_unchecked().mul_scalar(half);

let score = e1.min(&e2).unwrap_unchecked();

let sd = score.as_slice();
let dd = dst.as_slice_mut();
for i in 0..sd.len() {
dd[i] = sd[i];
}
}

Ok(())
}

/// Compute the Hessian response of an image.
///
Expand Down Expand Up @@ -325,7 +384,44 @@ pub fn dog_response(
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_gftt_response() -> Result<(), ImageError> {
#[rustfmt::skip]
let src = Image::from_size_slice(
[9, 9].into(),
&[
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 1.0, 1.0, 1.0, 0.0, 1.0, 1.0, 1.0, 0.0,
0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0,
0.0, 1.0, 1.0, 1.0, 0.0, 1.0, 1.0, 1.0, 0.0,
0.0, 0.0, 0.0, 0.0, 4.0, 0.0, 0.0, 0.0, 0.0,
0.0, 1.0, 1.0, 1.0, 0.0, 1.0, 1.0, 1.0, 0.0,
0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0,
0.0, 1.0, 1.0, 1.0, 0.0, 1.0, 1.0, 1.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
],
)?;

let mut dst = Image::from_size_val([9, 9].into(), 0.0)?;
gftt_response(&src, &mut dst)?;

#[rustfmt::skip]
let expected_center_value = 0.1274;
assert!(
(dst.as_slice()[4 * 9 + 4] - expected_center_value).abs() < 1e-4,
"Center value should be close to expected value"
);
let max = dst
.as_slice()
.iter()
.max_by(|a, b| a.partial_cmp(b).unwrap())
.unwrap();
assert!(
(*max - expected_center_value).abs() < 1e-4,
"Max value should be close to centre value"
);
Ok(())
}
#[test]
fn test_hessian_response() -> Result<(), ImageError> {
#[rustfmt::skip]
Expand Down
45 changes: 23 additions & 22 deletions crates/kornia-imgproc/src/filter/ops.rs
Original file line number Diff line number Diff line change
Expand Up @@ -220,37 +220,38 @@ pub fn spatial_gradient_float_parallel_row<const C: usize>(
}

let (sobel_x, sobel_y) = kernels::normalized_sobel_kernel3();
let rows = src.rows();
let cols = src.cols();

let src_data = src.as_slice();

dx.as_slice_mut()
let dx_data = dx.as_slice_mut();
let dy_data = dy.as_slice_mut();

dx_data
.par_chunks_mut(cols * C)
.zip(dy.as_slice_mut().par_chunks_mut(cols * C))
.zip(dy_data.par_chunks_mut(cols * C))
.enumerate()
.for_each(|(r, (dx_row, dy_row))| {
dx_row
.chunks_mut(C)
.zip(dy_row.chunks_mut(C))
.enumerate()
.for_each(|(c, (dx_c, dy_c))| {
let mut sum_x = [0.0; C];
let mut sum_y = [0.0; C];
for dy in 0..3 {
for dx in 0..3 {
let row = (r + dy).min(src.rows()).max(1) - 1;
let col = (c + dx).min(src.cols()).max(1) - 1;
for ch in 0..C {
let src_pix_offset = (row * src.cols() + col) * C + ch;
let val = unsafe { src_data.get_unchecked(src_pix_offset) };
sum_x[ch] += val * sobel_x[dy][dx];
sum_y[ch] += val * sobel_y[dy][dx];
}
for c in 0..cols {
let mut sum_x = [0.0f32; C];
let mut sum_y = [0.0f32; C];
for ky in 0..3 {
let y = (r + ky).saturating_sub(1).min(rows - 1);
for kx in 0..3 {
let x = (c + kx).saturating_sub(1).min(cols - 1);
let src_idx = (y * cols + x) * C;
for ch in 0..C {
let val = unsafe { *src_data.get_unchecked(src_idx + ch) };
sum_x[ch] += val * sobel_x[ky][kx];
sum_y[ch] += val * sobel_y[ky][kx];
}
}
dx_c.copy_from_slice(&sum_x);
dy_c.copy_from_slice(&sum_y);
});
}
let out_idx = c * C;
dx_row[out_idx..out_idx + C].copy_from_slice(&sum_x);
dy_row[out_idx..out_idx + C].copy_from_slice(&sum_y);
}
});

Ok(())
Expand Down
Loading
Loading