Skip to content

langchain-ai/chat-langchain

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

298 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Chat LangChain

A simple documentation assistant built with LangGraph.

LangGraph Python License

Overview

This is a documentation assistant agent that helps answer questions about LangChain, LangGraph, and LangSmith. It demonstrates how to build a production-ready agent using:

  • LangGraph - For agent orchestration and state management
  • LangChain Agents - For agent creation with middleware support
  • Guardrails - To keep conversations on-topic

Features

  • Documentation Search - Searches official LangChain docs
  • Support KB - Searches the Pylon knowledge base for known issues
  • Link Validation - Verifies URLs before including in responses
  • Guardrails - Filters off-topic queries

Quick Start

Prerequisites

  • Python 3.11+
  • uv (recommended) or pip

Installation

# Clone the repository
git clone https://github.com/langchain-ai/chat-langchain.git
cd chat-langchain

# Install dependencies with uv
uv sync

# Or with pip
pip install -e . "langgraph-cli[inmem]"

Configuration

# Copy environment template
cp .env.example .env

# Edit .env with your API keys

Required Environment Variables

Variable Description
ANTHROPIC_API_KEY Anthropic API key (or use another provider)
MINTLIFY_API_KEY Mintlify API key for docs search
PYLON_API_KEY Pylon API key for support KB

Running Locally

# Start LangGraph development server
uv run langgraph dev

# Or with pip
langgraph dev

Open LangGraph Studio: https://smith.langchain.com/studio/?baseUrl=http://127.0.0.1:2024

Project Structure

├── src/
│   ├── agent/
│   │   ├── docs_graph.py      # Main docs agent
│   │   └── config.py          # Model configuration
│   ├── tools/
│   │   ├── docs_tools.py      # Documentation search
│   │   ├── pylon_tools.py     # Support KB tools
│   │   └── link_check_tools.py # URL validation
│   ├── prompts/
│   │   └── docs_agent_prompt.py
│   └── middleware/
│       ├── guardrails_middleware.py
│       └── retry_middleware.py
├── langgraph.json             # LangGraph configuration
└── pyproject.toml             # Python project config

How It Works

The agent uses a docs-first research strategy:

  1. Guardrails Check - Validates the query is LangChain-related
  2. Documentation Search - Searches official docs via Mintlify
  3. Knowledge Base - Searches Pylon for known issues/solutions
  4. Link Validation - Verifies any URLs before including them
  5. Response Generation - Synthesizes a helpful answer

Deployment

LangGraph Cloud

  1. Push to GitHub
  2. Connect repository in LangSmith
  3. Configure environment variables
  4. Deploy

Resources

License

MIT

About

Resources

License

Code of conduct

Contributing

Security policy

Stars

Watchers

Forks

Contributors 32

Languages