Yiming Huang*,
Long Bai*,
Beilei Cui*,
Kun Yuan,
Guankun Wang,
Mobarak I. Hoque,
Nicolas Padoy,
Nassir Navab,
Hongliang Ren
|| Paper || Project Page ||
- Install the CUDA toolkit on ubuntu from Download link, and then:
export PATH=/usr/local/cuda-11.7/bin:${PATH}
export LD_LIBRARY_PATH=/usr/local/cuda-11.7/lib64:$LD_LIBRARY_PATH
export CUDA_HOME=/usr/local/cuda-11.7- Install the Python environment
git clone https://github.com/lastbasket/SurgTPGS
cd SurgTPGS
conda create -n SurgTPGS python=3.7
conda activate SurgTPGS
pip install -r requirements.txt
pip install -e submodules/depth-diff-gaussian-rasterization
pip install -e submodules/simple-knn- We have the processed version of CholeSeg and EndoVis 2018 datasets with disparity maps. Download the datasets from the Download Link, unzip to the following structure:
├── data
│ ├── cholecseg_sub
│ | ├── video01_00080
│ | ├── video01_00240
│ | ├── ...
│ ├── endovis_2018
│ | ├── seq_5_sub
│ | ├── seq_9_sub
- Download the SAM checkpoint, VLM(CLIP finetuned with CAT-Seg): CholecSeg checkpoints, and EndoVis 2018. Placing the checkpoints as:
├── ckpts
│ ├── model_final_cholecseg.pth
│ ├── model_final_endovis.pth
│ ├── sam_vit_h_4b8939.pth
# 1. data processing for VLM and SAM features
bash pre_data.sh
# 2. use the autoencoder for the semantic features
bash pre_VL_features.sh
# 3. train the SurgTPGS
bash train.sh# 1. render the RGB, Depth, and semantic features
bash render.sh
# 2. eval the semantic segmentation on novel view with text prompt
bash eval_fine.shWelcome to follow our related works:
- Endo-4DGX: Robust Endoscopic Gaussian Splatting with Illumination Correction
- Endo2DTAM: Gaussian Splatting SLAM for Endoscopic Scene
- Endo-4DGS: Monocular Endoscopic Scene Reconstruction with Gaussian Splatting
@misc{huang2025surgtpgssemantic3dsurgical,
title={SurgTPGS: Semantic 3D Surgical Scene Understanding with Text Promptable Gaussian Splatting},
author={Yiming Huang and Long Bai and Beilei Cui and Kun Yuan and Guankun Wang and Mobarakol Islam and Nicolas Padoy and Nassir Navab and Hongliang Ren},
year={2025},
eprint={2506.23309},
archivePrefix={arXiv},
primaryClass={eess.IV},
url={https://arxiv.org/abs/2506.23309},
}