Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions .github/workflows/ci.yml
Original file line number Diff line number Diff line change
Expand Up @@ -51,6 +51,7 @@ jobs:

# Run latexdiff on each document by retrieving the original .tex file from the default branch.
- name: Run latexdiff on documents
continue-on-error: true
run: |
# Install latexdiff if not present
apt-get install -y latexdiff
Expand Down
10 changes: 8 additions & 2 deletions Analysis-3.tex
Original file line number Diff line number Diff line change
Expand Up @@ -261,6 +261,11 @@ \section{Fouriertransformation \quad $f(t) \ra F(\omega)$}
0, & \abs{t-a} > T
\end{cases}$ & \multicolumn{3}{l}{\kern-2em $\FT 2ATe^{-\i\omega a} \mathrm{si}(\omega T)$}
\end{tabular}
\textbf{Spezialfälle:}
\begin{itemize}
\item $f$ gerade $\Leftrightarrow \hat{f}(\omega)=2\int_0^\infty f(t)\cos(\omega t)\diff t$
\item $f$ ungerade $\Leftrightarrow \hat{f}(\omega)=-2i\int_0^\infty f(t)\sin(\omega t)\diff t$
\end{itemize}
% Special case of the following function
% $r(t) = \begin{cases}
% 1/2 & \text{falls} \abs{t}<1 \\
Expand Down Expand Up @@ -341,7 +346,8 @@ \section{Laplacetransformation \quad $\mathcal L\bigl(f(t)\bigr) = F(s)$}
$\sin(a t)$ & \kern-2em $\LT \frac{a}{s^2 + a^2}$ & $\cos(a t)$ & \kern-2em $\LT \frac{s}{s^2 + a^2}$\\[0.5em]
$\sinh(a t)$ & \kern-2em $\LT \frac{a}{s^2 - a^2}$ & $\cosh(a t)$ & \kern-2em $\LT \frac{s}{s^2 - a^2}$\\[0.5em]
$\frac{\sin(at)}{t}$ & \kern-2em $\LT\arctan\left(\frac{a}{s}\right)$ & $\frac{t^{n-1}}{(n-1)!}$ & \kern-2em $\LT \frac{1}{s^n}$ \\[0.5em]
$e^{-at} \sin(b t)$ & \kern-2em $\LT \frac{b}{(s+a)^2+b^2}$ \\
$e^{-at} \sin(b t)$ & \kern-2em $\LT \frac{b}{(s+a)^2+b^2}$
&$t^ne^{at}$ & \kern-2em $\LT \frac{n!}{(s-a)^{n+1}}$\\
$e^{-at} \cos(b t)$ & \kern-2em $\LT \frac{s+a}{(s+a)^2+b^2}$\\
$\frac{ae^{-at}-be^{-bt}}{a-b}$ & $\kern-2em \LT \frac{s}{(s+a)(s+b)}$
\end{tabular}\\
Expand Down Expand Up @@ -491,7 +497,7 @@ \section{Funktionentheorie (Komplexe Funktionen)}
\subsection{Existenz einer Stammfunktion und Wegunabhängigkeit}
Ist $\cx f: G \ra \C$ holomorph auf dem einfach zsh. Gebiet $G$, so existiert zu $\cx f$ eine Stammfunktion $\cx F$, und es gilt für jede in $G$ verlaufende Kurve $\cx \gamma$ mit Anfangspunkt $\cx \gamma(a)$ und Endpunkt $\cx \gamma(b)$: \\
\begin{equation*}
\int \limits_{\cx \gamma} \cx f(\cx z) \diff \cx z = \cx F(\cx \gamma (b)) - \cx F(\cx \gamma (a))
\int \limits_{\cx \gamma} \cx f(\cx z) \diff \cx z = \cx F(\cx \gamma (b)) - \cx F(\cx \gamma (a)) = \int\limits_a^bf(\gamma(t)) \cdot \dot{\gamma}(t) \diff t
\end{equation*}
\end{sectionbox}

Expand Down
Loading