Skip to content

le-el/semantic-similarity-analysis

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

32 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

semantic-similarity-analysis

an easy-to-use interface to fine-tuned BERT models for computing semantic similarity. that's it.

This project contains an interface to fine-tuned, BERT-based semantic text similarity models. It modifies pytorch-transformers by abstracting away all the research benchmarking code for ease of real-world applicability.

Model Dataset Dev. Correlation
Web STS BERT STS-B 0.893
Clinical STS BERT MED-STS 0.854

Installation

Install with pip:

pip install semantic-text-similarity

or directly:

pip install git+https://github.com/topdev0215/semantic-text-similarity

Use

Maps batches of sentence pairs to real-valued scores in the range [0,5]

from semantic_text_similarity.models import WebBertSimilarity
from semantic_text_similarity.models import ClinicalBertSimilarity

web_model = WebBertSimilarity(device='cpu', batch_size=10) #defaults to GPU prediction

clinical_model = ClinicalBertSimilarity(device='cuda', batch_size=10) #defaults to GPU prediction

web_model.predict([("She won an olympic gold medal","The women is an olympic champion")])

More examples.

Notes

  • You will need a GPU to apply these models if you would like any hint of speed in your predictions.
  • Model downloads are cached in ~/.cache/torch/semantic_text_similarity/. Try clearing this folder if you have issues.

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages