Skip to content

Conversation

@leodemoura
Copy link
Member

This PR implements support for the heterogeneous (k : Nat) * (a : R) in ordered modules. Example:

variable (R : Type u) [IntModule R] [LinearOrder R] [IntModule.IsOrdered R]

example (x y z : R) (hx : x ≤ 3 * y) (h2 : y ≤ 2 * z) (h3 : x ≥ 6 * z) : x = 3 * y := by
  grind

example (x y z : Int) (h1 : 2 * x < 3 * y) (h2 : -4 * x + 2 * z < 0) (h3 : x * y < 5) : ¬ 12*y - 4* z < 0 := by
  grind

@leodemoura leodemoura added the changelog-language Language features and metaprograms label Jun 13, 2025
@leodemoura leodemoura enabled auto-merge June 13, 2025 16:04
@leodemoura leodemoura added this pull request to the merge queue Jun 13, 2025
Merged via the queue into master with commit 95e532a Jun 13, 2025
12 checks passed
algebraic-dev pushed a commit to algebraic-dev/lean4 that referenced this pull request Jun 18, 2025
…eanprover#8773)

This PR implements support for the heterogeneous `(k : Nat) * (a : R)`
in ordered modules. Example:
```lean
variable (R : Type u) [IntModule R] [LinearOrder R] [IntModule.IsOrdered R]

example (x y z : R) (hx : x ≤ 3 * y) (h2 : y ≤ 2 * z) (h3 : x ≥ 6 * z) : x = 3 * y := by
  grind

example (x y z : Int) (h1 : 2 * x < 3 * y) (h2 : -4 * x + 2 * z < 0) (h3 : x * y < 5) : ¬ 12*y - 4* z < 0 := by
  grind
```
wkrozowski pushed a commit to wkrozowski/lean4 that referenced this pull request Jun 24, 2025
…eanprover#8773)

This PR implements support for the heterogeneous `(k : Nat) * (a : R)`
in ordered modules. Example:
```lean
variable (R : Type u) [IntModule R] [LinearOrder R] [IntModule.IsOrdered R]

example (x y z : R) (hx : x ≤ 3 * y) (h2 : y ≤ 2 * z) (h3 : x ≥ 6 * z) : x = 3 * y := by
  grind

example (x y z : Int) (h1 : 2 * x < 3 * y) (h2 : -4 * x + 2 * z < 0) (h3 : x * y < 5) : ¬ 12*y - 4* z < 0 := by
  grind
```
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

changelog-language Language features and metaprograms

Projects

None yet

Development

Successfully merging this pull request may close these issues.

2 participants