AGI Agentic 🚀
- 🎯 ReAct
- 🧪 MCP
- 🔗 Tools
- 📊 Agent
This Quickstart uses the project's uv workflow (preferred). Commands assume macOS and a POSIX shell.
Prerequisites
- Python 3.11+ (3.12 recommended)
- Git
- uv CLI (project package manager). If you don't have it, install per your environment (e.g. pip install uv).
- Clone repository
git clone https://github.com/lifangjunone/AGIAgentic.git
cd AGIAgentic/AGIAgentic-backend2a) (Optional) Create and activate a venv (recommended if you prefer)
python -m venv .venv
source .venv/bin/activate2b) (If you rely on uv-managed env, skip venv creation)
- Sync dependencies with uv (reads uv.lock / pyproject)
# synchronize / install pinned deps from uv.lock
uv sync- Configure environment variables
# environment config
export RUN_ENV=development|production|test
# config file path:
├─ envs/
│ ├─ development.env # dev env
│ ├─ production.env # prod env
│ ├─ test.env # test envOr export for current shell:
export OPENAI_API_KEY="sk-..."- Start the backend (preferred: uv)
# run the app via project CLI (hot-reload behaviour depends on project)
uv run main.pyFallback: uvicorn (if uv is unavailable)
python -m uvicorn main:app --reload --host 0.0.0.0 --port 8000- Test the streaming plan API (example)
curl -X 'POST' \
'http://127.0.0.1:8000/api/v1/plan_executor/stream' \
-H 'accept: application/json' \
-H 'Content-Type: application/json' \
-d '{
"user_task": "昨天北京到天津的车票都有哪些时间的",
"user_id": "001"
}'The endpoint returns Server-Sent Events (SSE). Parse each "data:" line as JSON.
- Run tests
pytest -qTroubleshooting (common)
- "Expected dict, got <...>": ensure runtime events/state only contain serializable types (strings/dicts/lists/primitives). Avoid writing langchain HumanMessage / complex objects into graph state or SSE payloads.
- Dependency / lock issues: run
uv syncagain, or recreate your venv and re-runuv sync. - Model/tool errors: verify API keys and tool configurations in .env.
If you want, I can add platform-specific launch scripts, a systemd service example, or a docker-compose file next.
We welcome contributions from the community! Whether it's bug fixes, feature additions, or documentation improvements, your input is valuable.
- Fork the repository
- Create your feature branch (git checkout -b feature/AmazingFeature)
- Commit your changes (git commit -m 'Add some AmazingFeature')
- Push to the branch (git push origin feature/AmazingFeature)
- Open a Pull Request
@misc{ragas2024,
author = {LI},
title = {AGIAgentic: Plan and execute},
year = {2025},
howpublished = {\url{https://github.com}},
}
+Jump to the streaming events reference: astream_events — API Reference





