Automated deployment script to run your private, self-hosted LLM inference server on Akamai Cloud GPU instances. Pre-configured with NVIDIA-Nemotron-Nano-9B-v2 (9B parameter model) optimized for instruction following. Get vLLM and Open-WebUI up and running in minutes with a single command.
NVIDIA-Nemotron-Nano-9B-v2 is NVIDIAβs optimized ~9B-parameter LLM built for high-performance inference on NVidia GPUs including RTX ada 4000 ada. Its architecture is aggressively optimized for throughput, quantization friendliness, and low-latency deploymentβthe goal is to maximize performance per watt and per dollar on NVIDIA hardware.
Key advantages:
- GPU-optimized architecture: Designed and tuned by NVIDIA to take advantage of TensorRT-LLM, FP8 quantization, and accelerated KV-cache formats.
- Memory efficient: 9B parameters fit comfortably on a single RTX 4000 Ada GPU with room for context
- Quantization ready (FP8, INT8, INT4): Maintains excellent performance even under aggressive quantizationβmaking it suitable for edge inferencing or large-scale deployments.
Check out these other quickstart repositories:
| Model | Parameters | Description | Repository |
|---|---|---|---|
| GPT-OSS-20B | 20B | Large-scale open-source GPT model | ai-quickstart-gpt-oss-20b |
| Qwen3-14B-FP8 | 14B | Qwen3 with FP8 quantization (this repo) | ai-quickstart-qwen3-14b-fp8 |
| NVIDIA Nemotron Nano 9B v2 | 9B | NVIDIA's efficient Nemotron model | ai-quickstart-nvidia-nemotron-nano-9b-v2 |
Just run this single command:
curl -fsSL https://raw.githubusercontent.com/linode/ai-quickstart-nvidia-nemotron-nano-9b-v2/main/deploy.sh | bashThat's it! The script will download required files and guide you through the interactive deployment process.
- Fully Automated Deployment: handles instance creation with real-time progress tracking
- Basic AI Stack: vLLM for LLM inference with pre-loaded model and Open-WebUI for chat interface
- Cross-Platform Support: Works on macOS and Windows (Git Bash/WSL)
- Ubuntu 24.04 LTS with NVIDIA drivers
- Docker & NVIDIA Container Toolkit
- Systemd service for automatic startup on reboot
- Active Linode account with GPU access enabled
- Required: bash, curl, ssh, jq
- Note: jq will be auto-installed if missing
No installation required - just run:
curl -fsSL https://raw.githubusercontent.com/linode/ai-quickstart-nvidia-nemotron-nano-9b-v2/main/deploy.sh | bashDownload the script and run locally:
curl -fsSLO https://raw.githubusercontent.com/linode/ai-quickstart-nvidia-nemotron-nano-9b-v2/main/deploy.sh
bash deploy.shIf you prefer to inspect or customize the scripts:
git clone https://github.com/linode/ai-quickstart-nvidia-nemotron-nano-9b-v2
cd ai-quickstart-nvidia-nemotron-nano-9b-v2
./deploy.shNote
if you like to add more services check out docker compose template file
vi /template/docker-compose.yml
The script will ask you to:
- Choose a region (e.g., us-east, eu-west)
- Select GPU instance type
- Provide instance label
- Select or generate SSH keys
- Confirm deployment
The script automatically:
- Creates GPU instance in your linode account
- Monitors cloud-init installation progress
- Waits for Open-WebUI health check
- Waits for vLLM model loading
Once complete, you'll see:
π Setup Complete!
β
Your AI LLM instance is now running!
π Access URLs:
Open-WebUI: https://<ip-label>.ip.linodeusercontent.com
π Access Credentials:
SSH: ssh -i /path/to/your/key root@<instance-ip>
# Install script called by cloud-init service
/opt/ai-quickstart-nvidia-nemotron-nano-9b-v2/install.sh
# docker compose file called by systemctl at startup
/opt/ai-quickstart-nvidia-nemotron-nano-9b-v2/docker-compose.yml
# Caddy reverse proxy configuration
/opt/ai-quickstart-nvidia-nemotron-nano-9b-v2/Caddyfile
# service definition
/etc/systemd/system/ai-quickstart-nvidia-nemotron-nano-9b-v2.service
To delete a deployed instance:
# Remote execution
curl -fsSL https://raw.githubusercontent.com/linode/ai-quickstart-nvidia-nemotron-nano-9b-v2/main/delete.sh | bash -s -- <instance_id>
# Or download script and run
curl -fsSLO https://raw.githubusercontent.com/linode/ai-quickstart-nvidia-nemotron-nano-9b-v2/main/delete.sh
bash delete.sh <instance_id>The script will show instance details and ask for confirmation before deletion.
ai-quickstart-nvidia-nemotron-nano-9b-v2/
βββ deploy.sh # Main deployment script
βββ delete.sh # Instance deletion script
βββ script/
β βββ quickstart_tools.sh # Shared functions (API, OAuth, utilities)
βββ template/
βββ cloud-init.yaml # Cloud-init configuration
βββ docker-compose.yml # Docker Compose configuration
βββ Caddyfile # Caddy reverse proxy configuration
βββ install.sh # Post-boot installation script
-
Configure Cloud Firewall (Recommended)
- Create Linode Cloud Firewall
- Restrict access to ports 80/443 by source IP
- Allow SSH (port 22) from trusted IPs only
-
SSH Security
- SSH key authentication required
- Root password provided for emergency console access only
# SSH into your instance
ssh -i /path/to/your/key root@<instance-ip>
# Check container status
docker ps -a
# Check Docker containers log
cd /opt/ai-quickstart-nvidia-nemotron-nano-9b-v2 && docker compose logs -f
# Check systemd service status
systemctl status ai-quickstart-nvidia-nemotron-nano-9b-v2.service
# View systemd service logs
journalctl -u ai-quickstart-nvidia-nemotron-nano-9b-v2.service -n 100
# Check cloud-init logs
tail -f /var/log/cloud-init-output.log -n 100
# Restart all services
systemctl restart ai-quickstart-nvidia-nemotron-nano-9b-v2.service
# Check NVIDIA GPU status
nvidia-smi
# Check vLLM loaded models
curl http://localhost:8000/v1/models
# Check Open-WebUI health
curl http://localhost:8080/health
# Check vLLM container logs
docker logs vllmIssues and pull requests are welcome! For major changes, please open an issue first to discuss what you would like to change.
This project is licensed under the Apache License 2.0.
