Skip to content

ljjTYJR/VLM-fine-tuning

Repository files navigation

The demo of fine-tuning a VLLM model with a custom dataset.

Preparation

Alvis usage

  • load needed modules: module load virtualenv/20.26.2-GCCcore-13.3.0 matplotlib/3.9.2-gfbf-2024a SciPy-bundle/2024.05-gfbf-2024a
  • bind the virtual environment: virtualenv --system-site-packages my_env
  • activate the virtual environment: source my_env/bin/activate
  • The working directory: cd /mimer/NOBACKUP/groups/naiss2025-22-933
  • Go to the qwen directory and run the training: python ft.py --config_file='cfg/qwen2_5-vl_train_0.yaml' --trainer.num_train_epochs=100

Reference

Fine-tuning the model

Converting the model to ollama

Notes

  • The Qwen model: transformers: 4.49.0
  • The Gemma model: transformers>=4.51.3

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published