The demo of fine-tuning a VLLM model with a custom dataset.
- The model: Qwen2.5-VL 7B model.
- The dataset: A custom dataset, which from image to generate the pddl file: https://huggingface.co/datasets/shuooru/image-hddl-dataset
- load needed modules:
module load virtualenv/20.26.2-GCCcore-13.3.0 matplotlib/3.9.2-gfbf-2024a SciPy-bundle/2024.05-gfbf-2024a - bind the virtual environment:
virtualenv --system-site-packages my_env - activate the virtual environment:
source my_env/bin/activate - The working directory:
cd /mimer/NOBACKUP/groups/naiss2025-22-933 - Go to the qwen directory and run the training:
python ft.py --config_file='cfg/qwen2_5-vl_train_0.yaml' --trainer.num_train_epochs=100
- https://huggingface.co/learn/cookbook/fine_tuning_vlm_trl
- https://www.philschmid.de/fine-tune-multimodal-llms-with-trl
- Qwen2.5-VL 7B model: https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct
- ggml-org/llama.cpp#2948
- https://github.com/ollama/ollama/blob/main/docs/import.md#Importing-a-fine-tuned-adapter-from-Safetensors-weights
- The Qwen model: transformers: 4.49.0
- The Gemma model: transformers>=4.51.3