To compile use make
. This project has been tested using the following dependencies (packages) installed via opam
:
Name | Installed | Synopsis |
---|---|---|
rocq |
9.0.0 |
The Rocq Prover with Stdlib |
coq-stdpp |
1.11.0 |
An extended "Standard Library" for Coq |
ocaml |
5.3.0 |
The OCaml compiler (virtual package) |
.
+-- Readme.md
+-- Makefile
+-- _CoqProject
+-- theories/prelude.v (global parameters)
+-- theories/quotient.v (quotients in Rocq)
+-- theories/stepindex.v (ordinals interface)
+-- theories/ordinals (ordinals framework)
+-- theories/existential_prop
| +-- classical.v (Choice+FunExt+PI->EM)
| +-- sigma.v (equality of sigma-types)
| +-- existential_prop.v (existential property)
+-- theories/categories/
| +-- category.v (general constructions)
| +-- contractive.v (subclass of locally contractive functors, example)
| +-- coprod.v (coproducts)
| +-- domain.v (uniqueness of solution, later is locally contractive, symmetrization, )
| +-- enriched.v (partial isomorphisms and pointwise-enriched limits)
| +-- logic.v (logical connectives for step-indexed logic)
| +-- ord_cat.v (presheaves over ordinals, later, next, earlier, fixpoint)
| +-- solution.v (solver for recursive domain equations)
Paper entry | Rocq qualified identifier |
---|---|
later | SynthDom.categories.ord_cat.later |
earlier | SynthDom.categories.ord_cat.earlier |
next | SynthDom.categories.ord_cat.next |
def. 3 | SynthDom.categories.ord_cat.Contractive |
lemma 4 | SynthDom.categories.ord_cat.{Contractive_comp_l,Contractive_comp_r} |
def. 5 | SynthDom.categories.ord_cat.{fixpoint, fixpoint_unfold, fixpoint_unique} |
theorem 7 | SynthDom.categories.ord_cat.{contr_fix, contr_fix_unfold, contr_fix_unique} |
def. 9 | SynthDom.categories.category.Enriched |
def. 10 | SynthDom.categories.category.EnrichedFunctor |
def. 11 | SynthDom.categories.enriched.LocallyContractiveFunctor |
lemma 12 | SynthDom.categories.enriched.{LocallyContractiveFunctor_comp_l, LocallyContractiveFunctor_comp_r} |
def. 13 | SynthDom.categories.enriched.is_iso_at |
lemma 15 | SynthDom.categories.enriched.is_iso_upto_total |
lemma 16 | SynthDom.categories.enriched.is_iso_at_func |
lemma 17 | SynthDom.categories.enriched.iso_upto_contr_func |
def. 18 | SynthDom.categories.enriched.enr_cone |
def. 19 | SynthDom.categories.enriched.enr_cone_hom |
def. 20 | SynthDom.categories.enriched.enr_cone_is_limit |
lemma 21 | SynthDom.categories.enriched.{strongly_connected_iso_at_diagram_enr_cone, limit_side_iso_at', limit_side_iso_at} |
corollary 22 | SynthDom.categories.enriched.limit_side_iso_at_cofinal |
theorem 23 | SynthDom.categories.domain.alg_of_solution_is_initial |
def. 24 | SynthDom.categories.solution.partial_solution |
def. 25 | SynthDom.categories.solution.par_sol_extension |
lemma 26 | SynthDom.categories.solution.the_extension |
def. 27 | SynthDom.categories.solution.is_canonical_par_sol |
lemma 28 | SynthDom.categories.solution.canonical_eq |
lemma 29 | SynthDom.categories.solution.tower |
theorem 30 | SynthDom.categories.solution.solver |
example 32 | SynthDom.categories.solution.simplified_gitree_dom |
lemma 33 | SynthDom.categories.domain.symmetrization_sol |
theorem 34 | SynthDom.existential_prop.existential_prop.forall_exists_swap |
def. 36 | SynthDom.existential_prop.existential_prop.regular |
theorem 37 | SynthDom.categories.domain.{later_enriched, later_lc} |
remark 40 | SynthDom.categories.enriched.{isomorphism_at_id, compose_along_isomorphism_at_left, compose_along_isomorphism_at_right, compose_along_is_iso_at_left, compose_along_is_iso_at_right, compose_along_is_iso_at_left', compose_along_is_iso_at_right', is_iso_at_compose, is_iso_at_uncompose_l, is_iso_at_uncompose_r} |
theorem 42 | SynthDom.categories.ord_cat.later_adj |
theorem 43 | SynthDom.categories.category.{func_limit, func_cat_limits_pointwise} |
theorem 44 | SynthDom.categories.category.alg_complete |
Construction | Rocq notation |
---|---|
Isomorphism | ≃ |
Terminal object | 1ₒ |
Products | a ×ₒ b |
Unique product morphism | << f, g >> |
Product of morphisms | f ×ₕ g |
Coproduct | a +ₒ b |
Unique coproduct morphism | << f ∣ g >> |
Coproduct of morphisms | f +ₕ g |
Exponential | b ↑ₒ a |
Functor object action | F ₒ a |
Functor morphism action | F ₕ f |
Natural transformation component | H ₙ a |