Skip to content

logsem/synthetic_domains

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

52 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

To compile use make. This project has been tested using the following dependencies (packages) installed via opam:

Dependencies

Name Installed Synopsis
rocq 9.0.0 The Rocq Prover with Stdlib
coq-stdpp 1.11.0 An extended "Standard Library" for Coq
ocaml 5.3.0 The OCaml compiler (virtual package)

Project layout

.
+-- Readme.md
+-- Makefile
+-- _CoqProject
+-- theories/prelude.v (global parameters)
+-- theories/quotient.v (quotients in Rocq)
+-- theories/stepindex.v (ordinals interface)
+-- theories/ordinals (ordinals framework)
+-- theories/existential_prop
|   +-- classical.v (Choice+FunExt+PI->EM)
|   +-- sigma.v (equality of sigma-types)
|   +-- existential_prop.v (existential property)
+-- theories/categories/
|   +-- category.v (general constructions)
|   +-- contractive.v (subclass of locally contractive functors, example)
|   +-- coprod.v (coproducts)
|   +-- domain.v (uniqueness of solution, later is locally contractive, symmetrization, )
|   +-- enriched.v (partial isomorphisms and pointwise-enriched limits)
|   +-- logic.v (logical connectives for step-indexed logic)
|   +-- ord_cat.v (presheaves over ordinals, later, next, earlier, fixpoint)
|   +-- solution.v (solver for recursive domain equations)

Paper-formalization glossary

Paper entry Rocq qualified identifier
later SynthDom.categories.ord_cat.later
earlier SynthDom.categories.ord_cat.earlier
next SynthDom.categories.ord_cat.next
def. 3 SynthDom.categories.ord_cat.Contractive
lemma 4 SynthDom.categories.ord_cat.{Contractive_comp_l,Contractive_comp_r}
def. 5 SynthDom.categories.ord_cat.{fixpoint, fixpoint_unfold, fixpoint_unique}
theorem 7 SynthDom.categories.ord_cat.{contr_fix, contr_fix_unfold, contr_fix_unique}
def. 9 SynthDom.categories.category.Enriched
def. 10 SynthDom.categories.category.EnrichedFunctor
def. 11 SynthDom.categories.enriched.LocallyContractiveFunctor
lemma 12 SynthDom.categories.enriched.{LocallyContractiveFunctor_comp_l, LocallyContractiveFunctor_comp_r}
def. 13 SynthDom.categories.enriched.is_iso_at
lemma 15 SynthDom.categories.enriched.is_iso_upto_total
lemma 16 SynthDom.categories.enriched.is_iso_at_func
lemma 17 SynthDom.categories.enriched.iso_upto_contr_func
def. 18 SynthDom.categories.enriched.enr_cone
def. 19 SynthDom.categories.enriched.enr_cone_hom
def. 20 SynthDom.categories.enriched.enr_cone_is_limit
lemma 21 SynthDom.categories.enriched.{strongly_connected_iso_at_diagram_enr_cone, limit_side_iso_at', limit_side_iso_at}
corollary 22 SynthDom.categories.enriched.limit_side_iso_at_cofinal
theorem 23 SynthDom.categories.domain.alg_of_solution_is_initial
def. 24 SynthDom.categories.solution.partial_solution
def. 25 SynthDom.categories.solution.par_sol_extension
lemma 26 SynthDom.categories.solution.the_extension
def. 27 SynthDom.categories.solution.is_canonical_par_sol
lemma 28 SynthDom.categories.solution.canonical_eq
lemma 29 SynthDom.categories.solution.tower
theorem 30 SynthDom.categories.solution.solver
example 32 SynthDom.categories.solution.simplified_gitree_dom
lemma 33 SynthDom.categories.domain.symmetrization_sol
theorem 34 SynthDom.existential_prop.existential_prop.forall_exists_swap
def. 36 SynthDom.existential_prop.existential_prop.regular
theorem 37 SynthDom.categories.domain.{later_enriched, later_lc}
remark 40 SynthDom.categories.enriched.{isomorphism_at_id, compose_along_isomorphism_at_left, compose_along_isomorphism_at_right, compose_along_is_iso_at_left, compose_along_is_iso_at_right, compose_along_is_iso_at_left', compose_along_is_iso_at_right', is_iso_at_compose, is_iso_at_uncompose_l, is_iso_at_uncompose_r}
theorem 42 SynthDom.categories.ord_cat.later_adj
theorem 43 SynthDom.categories.category.{func_limit, func_cat_limits_pointwise}
theorem 44 SynthDom.categories.category.alg_complete

Notation glossary

Category theory

Construction Rocq notation
Isomorphism
Terminal object 1ₒ
Products a ×ₒ b
Unique product morphism << f, g >>
Product of morphisms f ×ₕ g
Coproduct a +ₒ b
Unique coproduct morphism << f ∣ g >>
Coproduct of morphisms f +ₕ g
Exponential b ↑ₒ a
Functor object action F ₒ a
Functor morphism action F ₕ f
Natural transformation component H ₙ a

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 2

  •  
  •  

Languages