Skip to content
Merged
Changes from 2 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
52 changes: 37 additions & 15 deletions deepxde/nn/paddle/fnn.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,12 +3,20 @@
from .nn import NN
from .. import activations
from .. import initializers
from .. import regularizers


class FNN(NN):
"""Fully-connected neural network."""

def __init__(self, layer_sizes, activation, kernel_initializer):
def __init__(
self,
layer_sizes,
activation,
kernel_initializer,
regularization=None,
dropout_rate=0.0,
):
super().__init__()
if isinstance(activation, list):
if not (len(layer_sizes) - 1) == len(activation):
Expand All @@ -20,6 +28,13 @@ def __init__(self, layer_sizes, activation, kernel_initializer):
self.activation = activations.get(activation)
initializer = initializers.get(kernel_initializer)
initializer_zero = initializers.get("zeros")
self.regularizer = regularizers.get(regularization)
self.dropout_rate = dropout_rate
self.dropouts = [
paddle.nn.Dropout(p=dropout_rate)
for _ in range(1, len(layer_sizes) - 1)
if dropout_rate > 0.0
]

self.linears = paddle.nn.LayerList()
for i in range(1, len(layer_sizes)):
Expand All @@ -37,6 +52,8 @@ def forward(self, inputs):
if isinstance(self.activation, list)
else self.activation(linear(x))
)
if self.dropout_rate > 0.0:
x = self.dropouts[j](x)
x = self.linears[-1](x)
if self._output_transform is not None:
x = self._output_transform(inputs, x)
Expand All @@ -58,11 +75,14 @@ class PFNN(NN):
kernel_initializer: Initializer for the kernel weights matrix.
"""

def __init__(self, layer_sizes, activation, kernel_initializer):
def __init__(
self, layer_sizes, activation, kernel_initializer, regularization=None
):
super().__init__()
self.activation = activations.get(activation)
initializer = initializers.get(kernel_initializer)
initializer_zero = initializers.get("zeros")
self.regularizer = regularizers.get(regularization)

if len(layer_sizes) <= 1:
raise ValueError("must specify input and output sizes")
Expand All @@ -73,7 +93,6 @@ def __init__(self, layer_sizes, activation, kernel_initializer):

n_output = layer_sizes[-1]


def make_linear(n_input, n_output):
linear = paddle.nn.Linear(n_input, n_output)
initializer(linear.weight)
Expand All @@ -92,18 +111,22 @@ def make_linear(n_input, n_output):
if isinstance(prev_layer_size, (list, tuple)):
# e.g. [8, 8, 8] -> [16, 16, 16]
self.layers.append(
paddle.nn.LayerList([
make_linear(prev_layer_size[j], curr_layer_size[j])
for j in range(n_output)
])
paddle.nn.LayerList(
[
make_linear(prev_layer_size[j], curr_layer_size[j])
for j in range(n_output)
]
)
)
else:
# e.g. 64 -> [8, 8, 8]
self.layers.append(
paddle.nn.LayerList([
make_linear(prev_layer_size, curr_layer_size[j])
for j in range(n_output)
])
paddle.nn.LayerList(
[
make_linear(prev_layer_size, curr_layer_size[j])
for j in range(n_output)
]
)
)
else: # e.g. 64 -> 64
if not isinstance(prev_layer_size, int):
Expand All @@ -115,10 +138,9 @@ def make_linear(n_input, n_output):
# output layers
if isinstance(layer_sizes[-2], (list, tuple)): # e.g. [3, 3, 3] -> 3
self.layers.append(
paddle.nn.LayerList([
make_linear(layer_sizes[-2][j], 1)
for j in range(n_output)
])
paddle.nn.LayerList(
[make_linear(layer_sizes[-2][j], 1) for j in range(n_output)]
)
)
else:
self.layers.append(make_linear(layer_sizes[-2], n_output))
Expand Down
Loading