Skip to content

m9h/neurojax

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

2 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

License: MIT

NeuroJAX is a differentiable, GPU-accelerated cli tool for EMEG processing and non linear dynamical systems analysis

Vision

To unify Preprocessing and Modelling into a single computational graph, enabling end-to-end gradient descent from sensor error to biophysical parameters.

The Stack

  • Core: JAX, Equinox
  • Solvers: Lineax (GLM/Beamforming), Optimistix
  • Dynamics: Diffrax (Neural ODEs / DCM)
  • Inverse: Scico (Sparse/Iterative solvers)

Roadmap

  1. GLM: Mass-univariate permutation testing on GPU (src/neurojax/glm.py).
  2. Inverse: Differentiable Beamformers and CHAMPAGNE algorithm.
  3. Biophysics: Differentiable implementations of Wong-Wang and Canonical Microcircuit models (replacing TVB/DCM).
  4. Foundation: Mamba-based sequence modelling for whole-brain dynamics.

Installation

We recommended using uv for dependency management.

# Install dependencies and project
uv sync

GLM Permutation Testing

from neurojax.glm import GeneralLinearModel, run_permutation_test
# See examples/demo_glm.py for full usage

About

No description, website, or topics provided.

Resources

License

Contributing

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages