From raw footage to concise insights: Build an adaptive video-understanding pipeline that probes each video and automatically chooses the right mix of ASR, OCR, and a vision-language model. Process in chunks (Decord), transcribe speech (Whisper), read on-screen text (Tesseract), describe frames (Ovis2.5), then condense everything into a clear summary (Qwen2.5).
conda create --prefix D:\\conda_env\\video_understanding Python=3.11 -y && conda activate D:\conda_env\video_understanding pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu121
pip install git+https://github.com/huggingface/transformers
pip install git+https://github.com/huggingface/accelerate
pip install -r requirements.txtconda remove --prefix D:\\conda_env\\video_understanding --allstreamlit run app.py