Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Brent Minimizer #728

Open
wants to merge 3 commits into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
60 changes: 60 additions & 0 deletions src/Numerics.Tests/OptimizationTests/BrentMinimizerTests.cs
Original file line number Diff line number Diff line change
@@ -0,0 +1,60 @@
// <copyright file="BrentMinimizerTests.cs" company="Math.NET">
// Math.NET Numerics, part of the Math.NET Project
// http://numerics.mathdotnet.com
// http://github.com/mathnet/mathnet-numerics
//
// Copyright (c) 2009-2017 Math.NET
//
// Permission is hereby granted, free of charge, to any person
// obtaining a copy of this software and associated documentation
// files (the "Software"), to deal in the Software without
// restriction, including without limitation the rights to use,
// copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following
// conditions:
//
// The above copyright notice and this permission notice shall be
// included in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
// HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
// WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
// OTHER DEALINGS IN THE SOFTWARE.
// </copyright>

using System;
using MathNet.Numerics.Optimization;
using NUnit.Framework;

namespace MathNet.Numerics.UnitTests.OptimizationTests
{
[TestFixture]
public class BrentMinimizerTests
{
[Test]
public void Test_Works()
{
var f1 = new Func<double, double>(x => (x - 3) * (x - 3));
var obj = ObjectiveFunction.ScalarValue(f1);
var r1 = BrentMinimizer.Minimum(obj, -100, 100);

Assert.That(Math.Abs(r1.MinimizingPoint - 3.0), Is.LessThan(1e-4));
}

[Test]
public void Test_ExpansionWorks()
{
var algorithm = new BrentMinimizer(1e-5, 1000);
var f1 = new Func<double, double>(x => (x - 3) * (x - 3));
var obj = ObjectiveFunction.ScalarValue(f1);
var r1 = algorithm.FindMinimum(obj, -2, 2);

Assert.That(Math.Abs(r1.MinimizingPoint - 3.0), Is.LessThan(1e-4));
Copy link

@blhough blhough Jan 8, 2021

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

The upper bound is x≤2 so it should not reach the global min at x=3.
I believe the expected MinimizingPoint is x=2

The GoldenSectionMinimizer actually has a bug where it doesn't respect the bounds

}
}
}
Original file line number Diff line number Diff line change
Expand Up @@ -53,7 +53,7 @@ public void Test_ExpansionWorks()
var algorithm = new GoldenSectionMinimizer(1e-5, 1000);
var f1 = new Func<double, double>(x => (x - 3)*(x - 3));
var obj = ObjectiveFunction.ScalarValue(f1);
var r1 = algorithm.FindMinimum(obj, -5, 5);
var r1 = algorithm.FindMinimum(obj, -1, 1);

Assert.That(Math.Abs(r1.MinimizingPoint - 3.0), Is.LessThan(1e-4));
}
Expand Down
193 changes: 193 additions & 0 deletions src/Numerics/Optimization/BrentMinimizer.cs
Original file line number Diff line number Diff line change
@@ -0,0 +1,193 @@
// <copyright file="BrentMinimizer.cs" company="Math.NET">
// Math.NET Numerics, part of the Math.NET Project
// http://numerics.mathdotnet.com
// http://github.com/mathnet/mathnet-numerics
//
// Copyright (c) 2009-2017 Math.NET
//
// Permission is hereby granted, free of charge, to any person
// obtaining a copy of this software and associated documentation
// files (the "Software"), to deal in the Software without
// restriction, including without limitation the rights to use,
// copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following
// conditions:
//
// The above copyright notice and this permission notice shall be
// included in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
// HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
// WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
// OTHER DEALINGS IN THE SOFTWARE.
// </copyright>

using MathNet.Numerics.Optimization.ObjectiveFunctions;
using System;

namespace MathNet.Numerics.Optimization
{
public class BrentMinimizer
{
public double XTolerance { get; set; }
public int MaximumIterations { get; set; }
public int MaximumExpansionSteps { get; set; }
public double LowerExpansionFactor { get; set; }
public double UpperExpansionFactor { get; set; }

public BrentMinimizer(double xTolerance = 1e-5, int maxIterations = 1000, int maxExpansionSteps = 10, double lowerExpansionFactor = 2.0, double upperExpansionFactor = 2.0)
{
XTolerance = xTolerance;
MaximumIterations = maxIterations;
MaximumExpansionSteps = maxExpansionSteps;
LowerExpansionFactor = lowerExpansionFactor;
UpperExpansionFactor = upperExpansionFactor;
}

public ScalarMinimizationResult FindMinimum(IScalarObjectiveFunction objective, double lowerBound, double upperBound)
{
return Minimum(objective, lowerBound, upperBound, XTolerance, MaximumIterations, MaximumExpansionSteps, LowerExpansionFactor, UpperExpansionFactor);
}

public static ScalarMinimizationResult Minimum(IScalarObjectiveFunction objective, double lowerBound, double upperBound, double xTolerance = 1e-5,
int maxIterations = 1000, int maxExpansionSteps = 10, double lowerExpansionFactor = 2.0, double upperExpansionFactor = 2.0)
{
int maxfun = maxIterations;

if (lowerBound > upperBound)
throw new OptimizationException("Lower bound must be lower than upper bound.");

double sqrt_eps = Math.Sqrt(2.2e-16);

// This is not the golden_mean, but golden angle. Not sure why.
// https://en.wikipedia.org/wiki/Golden_angle
double golden_angle = 0.5 * (3.0 - Math.Sqrt(5.0));

double a = lowerBound;
double b = upperBound;
double fulc = a + golden_angle * (b - a);

double nfc = fulc, xf = fulc;
double rat = 0.0, e = 0.0;
double x = xf;
var evaluation = objective.Evaluate(x);
double fx = evaluation.Value;
int num = 1;

double fu = double.PositiveInfinity;
double ffulc = fx, fnfc = fx;
double xm = 0.5 * (a + b);
double tol1 = sqrt_eps * Math.Abs(xf) + xTolerance / 3.0;
double tol2 = 2.0 * tol1;

while (Math.Abs(xf - xm) > (tol2 - 0.5 * (b - a)))
{
bool golden = true;

// Check for parabolic fit
if (Math.Abs(e) > tol1)
{
golden = false;
double r = (xf - nfc) * (fx - ffulc);
double q = (xf - fulc) * (fx - fnfc);
double p = (xf - fulc) * q - (xf - nfc) * r;
q = 2.0 * (q - r);
if (q > 0.0)
p = -p;
q = Math.Abs(q);
r = e;
e = rat;

// Check for acceptability of parabola
if ((Math.Abs(p) < Math.Abs(0.5 * q * r)) && (p > q * (a - xf)) && (p < q * (b - xf)))
{
rat = (p + 0.0) / q;
x = xf + rat;

if (((x - a) < tol2) || ((b - x) < tol2))
{
int si_2 = Math.Sign(xm - xf) + ((xm - xf) == 0 ? 1 : 0);
rat = tol1 * si_2;
}
}
else // do a golden-section step
golden = true;
}

if (golden) // do a golden-section step
{
if (xf >= xm)
e = a - xf;
else
e = b - xf;
rat = golden_angle * e;
}

int si = Math.Sign(rat) + (rat == 0 ? 1 : 0);
x = xf + si * Math.Max(Math.Abs(rat), tol1);

evaluation = objective.Evaluate(x);
fu = evaluation.Value;
num += 1;

if (fu <= fx)
{
if (x >= xf)
a = xf;
else
b = xf;

fulc = nfc; ffulc = fnfc;
nfc = xf; fnfc = fx;
xf = x; fx = fu;
}
else
{
if (x < xf)
a = x;
else
b = x;

if ((fu <= fnfc) || (nfc == xf))
{
fulc = nfc; ffulc = fnfc;
nfc = x; fnfc = fu;
}
else if ((fu <= ffulc) || (fulc == xf) || (fulc == nfc))
{
fulc = x; ffulc = fu;
}
}

xm = 0.5 * (a + b);
tol1 = sqrt_eps * Math.Abs(xf) + xTolerance / 3.0;
tol2 = 2.0 * tol1;

if (num >= maxfun)
break;
}

var exitCondition = ExitCondition.BoundTolerance;

if (num >= maxfun)
exitCondition = ExitCondition.ExceedIterations;
else if (double.IsNaN(xf) || double.IsNaN(fx) || double.IsNaN(fu))
exitCondition = ExitCondition.InvalidValues;

return new ScalarMinimizationResult(new ScalarValueObjectiveFunctionEvaluation(xf, fx), num, exitCondition);
}

static void ValueChecker(double value, double point)
{
if (Double.IsNaN(value) || Double.IsInfinity(value))
{
throw new Exception("Objective function returned non-finite value.");
}
}
}
}