Skip to content

A simple implementation of the apriori algorithm in python.

License

Notifications You must be signed in to change notification settings

mazieres/apriori

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

3 Commits
 
 
 
 
 
 
 
 

Repository files navigation

Apriori

About

A simple implementation of the apriori algorithm. A method for extracting frequent substructures in a set of sequences of ordered events.

How To

Apriori takes a list of strings, representing sequences, and an integer, representing the percentage of sequences the pattern must match for being considered.

In [1]: from apriori import *

In [2]: data = ["ABCDEFGHIJKL","ZOPQABCDLMNOP","REWQZOPQAB"]

In [3]: patterns = Apriori(data, 34)

In [4]: patterns
Out[4]:
{'AB': 3,
 'ABC': 2,
 'ABCD': 2,
 'BC': 2,
 'BCD': 2,
 'CD': 2,
 'OP': 2,
 'OPQ': 2,
 'OPQA': 2,
 'OPQAB': 2,
 'PQ': 2,
 'PQA': 2,
 'PQAB': 2,
 'QA': 2,
 'QAB': 2,
 'ZO': 2,
 'ZOP': 2,
 'ZOPQ': 2,
 'ZOPQA': 2,
 'ZOPQAB': 2}

References

  • "Mining Frequent Patterns, Associations, and Correlations" (Chap. 5) in Han, J., Kamber, M., & Pei, J. (2006). Data mining: concepts and techniques. Morgan kaufmann.

  • Mooney, C. H., & Roddick, J. F. (2013). Sequential pattern mining--approaches and algorithms. ACM Computing Surveys (CSUR), 45(2), 19.

About

A simple implementation of the apriori algorithm in python.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages