-
Notifications
You must be signed in to change notification settings - Fork 1.1k
fix: cancel scheduler tasks on shutdown #2130
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Conversation
9403798
to
b4af9f4
Compare
Otherwise the currently running tasks will never exit (before they actually complete), which means the process can't be properly shut down (only with SIGKILL). Ideally, we let tasks know that they are about to shutdown and give them some time to do so; but in the lack of the mechanism, it's better to cancel than linger forever. Signed-off-by: Ihar Hrachyshka <[email protected]>
b4af9f4
to
1ceebdc
Compare
Testing with several providers... |
OK I checked the shutdown problem reported by @cdoern for #2132 ; I tested the fix with torchtune / kfp provider and it's helpful. For hftrainer implementation, it's not but this is because hftrainer train() function is non-cooperative. In asyncio world, there's nothing you can do about a coroutine never yielding control to other coroutines. HFTrainer implementation would have to change train() so that it periodically yields. The fix is correct for providers that are more cooperative, e.g. torchtune-based that yields on each batch. |
@leseb please take a look. |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Looks good minus the comment on CI.
if job.completed_at is not None: | ||
return | ||
await asyncio.sleep(0.1) | ||
raise TimeoutError(f"Job {job_id} did not complete in time.") |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Could this lead to flakiness on slow CI?
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Not if we compare to what the test case already does (it already sleep
s). If this ever bites us, we could probably bump the 1s+ timeout a bit but I doubt async loop hand-off between tasks should take so long anywhere.
# What does this PR do? Scheduler: cancel tasks on shutdown. Otherwise the currently running tasks will never exit (before they actually complete), which means the process can't be properly shut down (only with SIGKILL). Ideally, we let tasks know that they are about to shutdown and give them some time to do so; but in the lack of the mechanism, it's better to cancel than linger forever. [//]: # (If resolving an issue, uncomment and update the line below) [//]: # (Closes #[issue-number]) ## Test Plan Start a long running task (e.g. torchtune or external kfp-provider training). Ctr-C the process in TTY. Confirm it exits in reasonable time. ``` ^CINFO: Shutting down INFO: Waiting for application shutdown. 13:32:26.187 - INFO - Shutting down 13:32:26.187 - INFO - Shutting down DatasetsRoutingTable 13:32:26.187 - INFO - Shutting down DatasetIORouter 13:32:26.187 - INFO - Shutting down TorchtuneKFPPostTrainingImpl Traceback (most recent call last): File "/opt/homebrew/Cellar/[email protected]/3.12.4/Frameworks/Python.framework/Versions/3.12/lib/python3.12/asyncio/runners.py", line 118, in run return self._loop.run_until_complete(task) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/homebrew/Cellar/[email protected]/3.12.4/Frameworks/Python.framework/Versions/3.12/lib/python3.12/asyncio/base_events.py", line 687, in run_until_complete return future.result() ^^^^^^^^^^^^^^^ asyncio.exceptions.CancelledError During handling of the above exception, another exception occurred: Traceback (most recent call last): File "<frozen runpy>", line 198, in _run_module_as_main File "<frozen runpy>", line 88, in _run_code File "/Users/ihrachys/src/llama-stack-provider-kfp-trainer/.venv/lib/python3.12/site-packages/kfp/dsl/executor_main.py", line 109, in <module> executor_main() File "/Users/ihrachys/src/llama-stack-provider-kfp-trainer/.venv/lib/python3.12/site-packages/kfp/dsl/executor_main.py", line 101, in executor_main output_file = executor.execute() ^^^^^^^^^^^^^^^^^^ File "/Users/ihrachys/src/llama-stack-provider-kfp-trainer/.venv/lib/python3.12/site-packages/kfp/dsl/executor.py", line 361, in execute result = self.func(**func_kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^ File "/var/folders/45/1q1rx6cn7jbcn2ty852w0g_r0000gn/T/tmp.RKpPrvTWDD/ephemeral_component.py", line 118, in component asyncio.run(recipe.setup()) File "/opt/homebrew/Cellar/[email protected]/3.12.4/Frameworks/Python.framework/Versions/3.12/lib/python3.12/asyncio/runners.py", line 194, in run return runner.run(main) ^^^^^^^^^^^^^^^^ File "/opt/homebrew/Cellar/[email protected]/3.12.4/Frameworks/Python.framework/Versions/3.12/lib/python3.12/asyncio/runners.py", line 123, in run raise KeyboardInterrupt() KeyboardInterrupt 13:32:31.219 - ERROR - Task 'component' finished with status FAILURE ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ INFO 2025-05-09 13:32:31,221 llama_stack.providers.utils.scheduler:221 scheduler: Job test-jobc3c2e1e4-859c-4852-a41d-ef29e55e3efa: Pipeline [1m[95m'test-jobc3c2e1e4-859c-4852-a41d-ef29e55e3efa'[1m[0m finished with status [1m[91mFAILURE[1m[0m. Inner task failed: [1m[96m'component'[1m[0m. ERROR 2025-05-09 13:32:31,223 llama_stack_provider_kfp_trainer.scheduler:54 scheduler: Job test-jobc3c2e1e4-859c-4852-a41d-ef29e55e3efa failed. ╭───────────────────────────────────── Traceback (most recent call last) ─────────────────────────────────────╮ │ /Users/ihrachys/src/llama-stack-provider-kfp-trainer/src/llama_stack_provider_kfp_trainer/scheduler.py:45 │ │ in do │ │ │ │ 42 │ │ │ │ │ 43 │ │ │ job.status = JobStatus.running │ │ 44 │ │ │ try: │ │ ❱ 45 │ │ │ │ artifacts = self._to_artifacts(job.handler().output) │ │ 46 │ │ │ │ for artifact in artifacts: │ │ 47 │ │ │ │ │ on_artifact_collected_cb(artifact) │ │ 48 │ │ │ │ /Users/ihrachys/src/llama-stack-provider-kfp-trainer/.venv/lib/python3.12/site-packages/kfp/dsl/base_compon │ │ ent.py:101 in __call__ │ │ │ │ 98 │ │ │ │ f'{self.name}() missing {len(missing_arguments)} required ' │ │ 99 │ │ │ │ f'{argument_or_arguments}: {arguments}.') │ │ 100 │ │ │ │ ❱ 101 │ │ return pipeline_task.PipelineTask( │ │ 102 │ │ │ component_spec=self.component_spec, │ │ 103 │ │ │ args=task_inputs, │ │ 104 │ │ │ execute_locally=pipeline_context.Pipeline.get_default_pipeline() is │ │ │ │ /Users/ihrachys/src/llama-stack-provider-kfp-trainer/.venv/lib/python3.12/site-packages/kfp/dsl/pipeline_ta │ │ sk.py:187 in __init__ │ │ │ │ 184 │ │ ]) │ │ 185 │ │ │ │ 186 │ │ if execute_locally: │ │ ❱ 187 │ │ │ self._execute_locally(args=args) │ │ 188 │ │ │ 189 │ def _execute_locally(self, args: Dict[str, Any]) -> None: │ │ 190 │ │ """Execute the pipeline task locally. │ │ │ │ /Users/ihrachys/src/llama-stack-provider-kfp-trainer/.venv/lib/python3.12/site-packages/kfp/dsl/pipeline_ta │ │ sk.py:197 in _execute_locally │ │ │ │ 194 │ │ from kfp.local import task_dispatcher │ │ 195 │ │ │ │ 196 │ │ if self.pipeline_spec is not None: │ │ ❱ 197 │ │ │ self._outputs = pipeline_orchestrator.run_local_pipeline( │ │ 198 │ │ │ │ pipeline_spec=self.pipeline_spec, │ │ 199 │ │ │ │ arguments=args, │ │ 200 │ │ │ ) │ │ │ │ /Users/ihrachys/src/llama-stack-provider-kfp-trainer/.venv/lib/python3.12/site-packages/kfp/local/pipeline_ │ │ orchestrator.py:43 in run_local_pipeline │ │ │ │ 40 │ │ │ 41 │ # validate and access all global state in this function, not downstream │ │ 42 │ config.LocalExecutionConfig.validate() │ │ ❱ 43 │ return _run_local_pipeline_implementation( │ │ 44 │ │ pipeline_spec=pipeline_spec, │ │ 45 │ │ arguments=arguments, │ │ 46 │ │ raise_on_error=config.LocalExecutionConfig.instance.raise_on_error, │ │ │ │ /Users/ihrachys/src/llama-stack-provider-kfp-trainer/.venv/lib/python3.12/site-packages/kfp/local/pipeline_ │ │ orchestrator.py:108 in _run_local_pipeline_implementation │ │ │ │ 105 │ │ │ ) │ │ 106 │ │ return outputs │ │ 107 │ elif dag_status == status.Status.FAILURE: │ │ ❱ 108 │ │ log_and_maybe_raise_for_failure( │ │ 109 │ │ │ pipeline_name=pipeline_name, │ │ 110 │ │ │ fail_stack=fail_stack, │ │ 111 │ │ │ raise_on_error=raise_on_error, │ │ │ │ /Users/ihrachys/src/llama-stack-provider-kfp-trainer/.venv/lib/python3.12/site-packages/kfp/local/pipeline_ │ │ orchestrator.py:137 in log_and_maybe_raise_for_failure │ │ │ │ 134 │ │ logging_utils.format_task_name(task_name) for task_name in fail_stack) │ │ 135 │ msg = f'Pipeline {pipeline_name_with_color} finished with status │ │ {status_with_color}. Inner task failed: {task_chain_with_color}.' │ │ 136 │ if raise_on_error: │ │ ❱ 137 │ │ raise RuntimeError(msg) │ │ 138 │ with logging_utils.local_logger_context(): │ │ 139 │ │ logging.error(msg) │ │ 140 │ ╰─────────────────────────────────────────────────────────────────────────────────────────────────────────────╯ RuntimeError: Pipeline [1m[95m'test-jobc3c2e1e4-859c-4852-a41d-ef29e55e3efa'[1m[0m finished with status [1m[91mFAILURE[1m[0m. Inner task failed: [1m[96m'component'[1m[0m. INFO 2025-05-09 13:32:31,266 llama_stack.distribution.server.server:136 server: Shutting down DistributionInspectImpl INFO 2025-05-09 13:32:31,266 llama_stack.distribution.server.server:136 server: Shutting down ProviderImpl INFO: Application shutdown complete. INFO: Finished server process [26648] ``` [//]: # (## Documentation) Signed-off-by: Ihar Hrachyshka <[email protected]>
What does this PR do?
Scheduler: cancel tasks on shutdown.
Otherwise the currently running tasks will never exit (before they
actually complete), which means the process can't be properly shut down
(only with SIGKILL).
Ideally, we let tasks know that they are about to shutdown and give them
some time to do so; but in the lack of the mechanism, it's better to
cancel than linger forever.
Test Plan
Start a long running task (e.g. torchtune or external kfp-provider training).
Ctr-C the process in TTY. Confirm it exits in reasonable time.