Skip to content

[WebNN] Always execute decomposed *SimplifiedLayerNormalization in FP32 #24437

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 2 commits into from
Apr 22, 2025
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -114,9 +114,33 @@ Status NormalizationOpBuilder::AddToModelBuilderImpl(ModelBuilder& model_builder
ORT_RETURN_IF_NOT(GetType(*input_defs[0], input_type, logger), "Cannot get input type");
emscripten::val common_options = emscripten::val::object();

if (input_type == ONNX_NAMESPACE::TensorProto_DataType_FLOAT16) {
// Decomposed *SimplifiedLayerNormalization may lose precision if its data type is float16.
// So cast all inputs to float32 to ensure precision.
common_options.set("label", node.Name() + "_cast_input_to_fp32");
input = model_builder.GetBuilder().call<emscripten::val>("cast", input,
emscripten::val("float32"), common_options);

common_options.set("label", node.Name() + "_cast_scale_to_fp32");
scale = model_builder.GetBuilder().call<emscripten::val>("cast", scale,
emscripten::val("float32"), common_options);

if (!bias.isUndefined()) {
common_options.set("label", node.Name() + "_cast_bias_to_fp32");
bias = model_builder.GetBuilder().call<emscripten::val>("cast", bias,
emscripten::val("float32"), common_options);
}
}

// If it is SkipSimplifiedLayerNormalization, add the skip and bias (if it exists) to the input.
if (op_type == "SkipSimplifiedLayerNormalization") {
emscripten::val skip = model_builder.GetOperand(input_defs[1]->Name());
if (input_type == ONNX_NAMESPACE::TensorProto_DataType_FLOAT16) {
// Cast skip to float32
common_options.set("label", node.Name() + "_cast_skip_to_fp32");
skip = model_builder.GetBuilder().call<emscripten::val>("cast", skip,
emscripten::val("float32"), common_options);
}
common_options.set("label", node.Name() + "_add_skip");
input = model_builder.GetBuilder().call<emscripten::val>("add", input, skip, common_options);
if (!bias.isUndefined()) {
Expand All @@ -127,12 +151,21 @@ Status NormalizationOpBuilder::AddToModelBuilderImpl(ModelBuilder& model_builder
// Add SkipSimplifiedLayerNormalization's output input_skip_bias_sum if it exists.
// Now input equals to input_skip_bias_sum.
if (TensorExists(output_defs, 3)) {
model_builder.AddOperand(output_defs[3]->Name(), input);
emscripten::val input_skip_bias_sum = input;
if (input_type == ONNX_NAMESPACE::TensorProto_DataType_FLOAT16) {
// Cast input_skip_bias_sum back to float16.
common_options.set("label", node.Name() + "_cast_input_skip_bias_sum_to_fp16");
input_skip_bias_sum = model_builder.GetBuilder().call<emscripten::val>("cast", input_skip_bias_sum,
emscripten::val("float16"),
common_options);
}
model_builder.AddOperand(output_defs[3]->Name(), input_skip_bias_sum);
}
}

// Pow
emscripten::val pow_constant = model_builder.CreateOrGetConstant<float>(input_type, 2);
emscripten::val pow_constant =
model_builder.CreateOrGetConstant<float>(ONNX_NAMESPACE::TensorProto_DataType_FLOAT, 2);
common_options.set("label", node.Name() + "_pow");
emscripten::val pow =
model_builder.GetBuilder().call<emscripten::val>("pow", input, pow_constant, common_options);
Expand All @@ -145,7 +178,8 @@ Status NormalizationOpBuilder::AddToModelBuilderImpl(ModelBuilder& model_builder
emscripten::val reduce_mean = model_builder.GetBuilder().call<emscripten::val>("reduceMean", pow, reduce_options);

// Add
emscripten::val add_constant = model_builder.CreateOrGetConstant<float>(input_type, epsilon);
emscripten::val add_constant =
model_builder.CreateOrGetConstant<float>(ONNX_NAMESPACE::TensorProto_DataType_FLOAT, epsilon);
common_options.set("label", node.Name() + "_add");
emscripten::val add =
model_builder.GetBuilder().call<emscripten::val>("add", reduce_mean, add_constant, common_options);
Expand All @@ -167,6 +201,13 @@ Status NormalizationOpBuilder::AddToModelBuilderImpl(ModelBuilder& model_builder
common_options.set("label", node.Name() + "_add_bias");
output = model_builder.GetBuilder().call<emscripten::val>("add", output, bias, common_options);
}

if (input_type == ONNX_NAMESPACE::TensorProto_DataType_FLOAT16) {
// Cast output back to float16.
common_options.set("label", node.Name() + "_cast_output_to_fp16");
output = model_builder.GetBuilder().call<emscripten::val>("cast", output,
emscripten::val("float16"), common_options);
}
}
} else if (op_type == "InstanceNormalization") {
// WebNN spec only supports 4D input for instanceNormalization.
Expand Down
Loading