Skip to content

Add ChangeDetectionTask #2422

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 24 commits into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
Show all changes
24 commits
Select commit Hold shift + click to select a range
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
15 changes: 15 additions & 0 deletions tests/conf/oscd.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,15 @@
model:
class_path: ChangeDetectionTask
init_args:
loss: 'bce'
model: 'unet'
backbone: 'resnet18'
in_channels: 13
data:
class_path: OSCDDataModule
init_args:
batch_size: 2
patch_size: 16
val_split_pct: 0.5
dict_kwargs:
root: 'tests/data/oscd'
82 changes: 0 additions & 82 deletions tests/datamodules/test_oscd.py

This file was deleted.

12 changes: 4 additions & 8 deletions tests/datasets/test_oscd.py
Original file line number Diff line number Diff line change
Expand Up @@ -66,19 +66,15 @@ def dataset(
def test_getitem(self, dataset: OSCD) -> None:
x = dataset[0]
assert isinstance(x, dict)
assert isinstance(x['image1'], torch.Tensor)
assert x['image1'].ndim == 3
assert isinstance(x['image2'], torch.Tensor)
assert x['image2'].ndim == 3
assert isinstance(x['image'], torch.Tensor)
assert x['image'].ndim == 4
assert isinstance(x['mask'], torch.Tensor)
assert x['mask'].ndim == 2

if dataset.bands == OSCD.rgb_bands:
assert x['image1'].shape[0] == 3
assert x['image2'].shape[0] == 3
assert x['image'].shape[1] == 3
else:
assert x['image1'].shape[0] == 13
assert x['image2'].shape[0] == 13
assert x['image'].shape[1] == 13

def test_len(self, dataset: OSCD) -> None:
if dataset.split == 'train':
Expand Down
7 changes: 4 additions & 3 deletions tests/trainers/conftest.py
Original file line number Diff line number Diff line change
Expand Up @@ -6,8 +6,8 @@
from pathlib import Path

import pytest
import timm
import torch
import torchvision
from _pytest.fixtures import SubRequest
from torch import Tensor
from torch.nn.modules import Module
Expand All @@ -22,8 +22,9 @@ def fast_dev_run(request: SubRequest) -> bool:


@pytest.fixture(scope='package')
def model() -> Module:
model: Module = torchvision.models.resnet18(weights=None)
def model(request: SubRequest) -> Module:
in_channels = getattr(request, 'param', 3)
model: Module = timm.create_model('resnet18', in_chans=in_channels)
return model


Expand Down
235 changes: 235 additions & 0 deletions tests/trainers/test_change.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,235 @@
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License.

import os
from pathlib import Path
from typing import Any, Literal, cast

import pytest
import segmentation_models_pytorch as smp
import timm
import torch
import torch.nn as nn
from lightning.pytorch import Trainer
from pytest import MonkeyPatch
from torch.nn.modules import Module
from torchvision.models._api import WeightsEnum

from torchgeo.datamodules import MisconfigurationException, OSCDDataModule
from torchgeo.datasets import OSCD, RGBBandsMissingError
from torchgeo.main import main
from torchgeo.models import ResNet18_Weights
from torchgeo.trainers import ChangeDetectionTask


class ChangeDetectionTestModel(Module):
def __init__(self, in_channels: int = 3, classes: int = 3, **kwargs: Any) -> None:
super().__init__()
self.conv1 = nn.Conv2d(
in_channels=in_channels, out_channels=classes, kernel_size=1, padding=0
)

def forward(self, x: torch.Tensor) -> torch.Tensor:
return cast(torch.Tensor, self.conv1(x))
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Suggested change
return cast(torch.Tensor, self.conv1(x))
x = self.conv1(x)
return x

Then we don't need to mess with cast



def create_model(**kwargs: Any) -> Module:
return ChangeDetectionTestModel(**kwargs)


def plot(*args: Any, **kwargs: Any) -> None:
return None


def plot_missing_bands(*args: Any, **kwargs: Any) -> None:
raise RGBBandsMissingError()


class PredictChangeDetectionDataModule(OSCDDataModule):
def setup(self, stage: str) -> None:
self.predict_dataset = OSCD(**self.kwargs)


class TestChangeDetectionTask:
@pytest.mark.parametrize('name', ['oscd'])
def test_trainer(
self, monkeypatch: MonkeyPatch, name: str, fast_dev_run: bool
) -> None:
config = os.path.join('tests', 'conf', name + '.yaml')

monkeypatch.setattr(smp, 'Unet', create_model)

args = [
'--config',
config,
'--trainer.accelerator',
'cpu',
'--trainer.fast_dev_run',
str(fast_dev_run),
'--trainer.max_epochs',
'1',
'--trainer.log_every_n_steps',
'1',
]

main(['fit', *args])
try:
main(['test', *args])
except MisconfigurationException:
pass
try:
main(['predict', *args])
except MisconfigurationException:
pass

def test_predict(self, fast_dev_run: bool) -> None:
datamodule = PredictChangeDetectionDataModule(
root='tests/data/oscd',
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Suggested change
root='tests/data/oscd',
root=os.path.join('tests', 'data', 'oscd'),

Windows, same below

batch_size=2,
patch_size=32,
val_split_pct=0.5,
num_workers=0,
)
model = ChangeDetectionTask(backbone='resnet18', in_channels=13, model='unet')
trainer = Trainer(
accelerator='cpu',
fast_dev_run=fast_dev_run,
log_every_n_steps=1,
max_epochs=1,
)
trainer.predict(model=model, datamodule=datamodule)

@pytest.fixture
def weights(self) -> WeightsEnum:
return ResNet18_Weights.SENTINEL2_ALL_MOCO

@pytest.fixture
def mocked_weights(
self,
tmp_path: Path,
monkeypatch: MonkeyPatch,
weights: WeightsEnum,
load_state_dict_from_url: None,
) -> WeightsEnum:
path = tmp_path / f'{weights}.pth'
# multiply in_chans by 2 since images are concatenated
model = timm.create_model(
weights.meta['model'], in_chans=weights.meta['in_chans'] * 2
)
torch.save(model.state_dict(), path)
try:
monkeypatch.setattr(weights.value, 'url', str(path))
except AttributeError:
monkeypatch.setattr(weights, 'url', str(path))
return weights

@pytest.mark.parametrize('model', [6], indirect=True)
def test_weight_file(self, checkpoint: str) -> None:
ChangeDetectionTask(backbone='resnet18', weights=checkpoint)

def test_weight_enum(self, mocked_weights: WeightsEnum) -> None:
ChangeDetectionTask(
backbone=mocked_weights.meta['model'],
weights=mocked_weights,
in_channels=mocked_weights.meta['in_chans'],
)

def test_weight_str(self, mocked_weights: WeightsEnum) -> None:
ChangeDetectionTask(
backbone=mocked_weights.meta['model'],
weights=str(mocked_weights),
in_channels=mocked_weights.meta['in_chans'],
)

@pytest.mark.slow
def test_weight_enum_download(self, weights: WeightsEnum) -> None:
ChangeDetectionTask(
backbone=weights.meta['model'],
weights=weights,
in_channels=weights.meta['in_chans'],
)

@pytest.mark.slow
def test_weight_str_download(self, weights: WeightsEnum) -> None:
ChangeDetectionTask(
backbone=weights.meta['model'],
weights=str(weights),
in_channels=weights.meta['in_chans'],
)

@pytest.mark.parametrize('model_name', ['unet', 'fcsiamdiff', 'fcsiamconc'])
@pytest.mark.parametrize(
'backbone', ['resnet18', 'mobilenet_v2', 'efficientnet-b0']
)
def test_freeze_backbone(
self, model_name: Literal['unet', 'fcsiamdiff', 'fcsiamconc'], backbone: str
) -> None:
model = ChangeDetectionTask(
model=model_name, backbone=backbone, freeze_backbone=True
)
assert all(
[param.requires_grad is False for param in model.model.encoder.parameters()]
)
assert all([param.requires_grad for param in model.model.decoder.parameters()])
assert all(
[
param.requires_grad
for param in model.model.segmentation_head.parameters()
]
)

@pytest.mark.parametrize('model_name', ['unet', 'fcsiamdiff', 'fcsiamconc'])
def test_freeze_decoder(
self, model_name: Literal['unet', 'fcsiamdiff', 'fcsiamconc']
) -> None:
model = ChangeDetectionTask(model=model_name, freeze_decoder=True)
assert all(
[param.requires_grad is False for param in model.model.decoder.parameters()]
)
assert all([param.requires_grad for param in model.model.encoder.parameters()])
assert all(
[
param.requires_grad
for param in model.model.segmentation_head.parameters()
]
)

@pytest.mark.parametrize('loss_fn', ['bce', 'jaccard', 'focal'])
def test_losses(self, loss_fn: Literal['bce', 'jaccard', 'focal']) -> None:
ChangeDetectionTask(loss=loss_fn)

def test_no_plot_method(self, monkeypatch: MonkeyPatch, fast_dev_run: bool) -> None:
monkeypatch.setattr(OSCDDataModule, 'plot', plot)
datamodule = OSCDDataModule(
root='tests/data/oscd',
batch_size=2,
patch_size=32,
val_split_pct=0.5,
num_workers=0,
)
model = ChangeDetectionTask(backbone='resnet18', in_channels=13, model='unet')
trainer = Trainer(
accelerator='cpu',
fast_dev_run=fast_dev_run,
log_every_n_steps=1,
max_epochs=1,
)
trainer.validate(model=model, datamodule=datamodule)

def test_no_rgb(self, monkeypatch: MonkeyPatch, fast_dev_run: bool) -> None:
monkeypatch.setattr(OSCDDataModule, 'plot', plot_missing_bands)
datamodule = OSCDDataModule(
root='tests/data/oscd',
batch_size=2,
patch_size=32,
val_split_pct=0.5,
num_workers=0,
)
model = ChangeDetectionTask(backbone='resnet18', in_channels=13, model='unet')
trainer = Trainer(
accelerator='cpu',
fast_dev_run=fast_dev_run,
log_every_n_steps=1,
max_epochs=1,
)
trainer.validate(model=model, datamodule=datamodule)
Loading