-
Notifications
You must be signed in to change notification settings - Fork 448
Add ChangeDetectionTask #2422
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Merged
Merged
Add ChangeDetectionTask #2422
Changes from all commits
Commits
Show all changes
26 commits
Select commit
Hold shift + click to select a range
1320e7e
starting from PR #1760
keves1 a8034ca
changed from image1, image2 to stacked images.
keves1 b9ad2a1
fixed mypy and ruff issues
keves1 9b0ff45
adding tests. some still need work.
keves1 5eecdc5
making Kornia transforms work with added temporal dimension.
keves1 9ff2ffe
Support only binary change with two timesteps. Moved loss functions t…
keves1 489304e
fixed issues with tests.
keves1 6cae2d7
Update versionadded
keves1 1c1295b
removed custom loss functions.
keves1 d64dc63
added docstring.
keves1 b699308
Fix syntax error in Python 3.10
adamjstewart fd55258
revert target dtype to long in dataset and change to float in trainer…
keves1 21a5baa
ruff format
keves1 cfb88d0
updated OSCD dataset tests
keves1 ce0a8d8
prettier format
keves1 f881051
Using K.CenterCrop until Kornia has a better option.
keves1 a6ed3f0
Removing file per #978
keves1 fc03f3b
misc updates from review comments
keves1 7385e81
adding test coverage
keves1 3a8896a
match statements and denormalizing for plotting
keves1 f199303
using monkeypatch to test predict_step
keves1 ccf563f
updated docstring
keves1 fa37921
ruff format
keves1 56337b7
test predict_step and other misc changes
keves1 594cd82
misc fixes
keves1 d42badd
updated docstring
keves1 File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,15 @@ | ||
model: | ||
class_path: ChangeDetectionTask | ||
init_args: | ||
loss: 'bce' | ||
model: 'unet' | ||
backbone: 'resnet18' | ||
in_channels: 13 | ||
data: | ||
class_path: OSCDDataModule | ||
init_args: | ||
batch_size: 2 | ||
patch_size: 16 | ||
val_split_pct: 0.5 | ||
dict_kwargs: | ||
root: 'tests/data/oscd' |
This file was deleted.
Oops, something went wrong.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,236 @@ | ||
# Copyright (c) Microsoft Corporation. All rights reserved. | ||
# Licensed under the MIT License. | ||
|
||
import os | ||
from pathlib import Path | ||
from typing import Any, Literal | ||
|
||
import pytest | ||
import segmentation_models_pytorch as smp | ||
import timm | ||
import torch | ||
import torch.nn as nn | ||
from lightning.pytorch import Trainer | ||
from pytest import MonkeyPatch | ||
from torch.nn.modules import Module | ||
from torchvision.models._api import WeightsEnum | ||
|
||
from torchgeo.datamodules import MisconfigurationException, OSCDDataModule | ||
from torchgeo.datasets import OSCD, RGBBandsMissingError | ||
from torchgeo.main import main | ||
from torchgeo.models import ResNet18_Weights | ||
from torchgeo.trainers import ChangeDetectionTask | ||
|
||
|
||
class ChangeDetectionTestModel(Module): | ||
def __init__(self, in_channels: int = 3, classes: int = 3, **kwargs: Any) -> None: | ||
super().__init__() | ||
self.conv1 = nn.Conv2d( | ||
in_channels=in_channels, out_channels=classes, kernel_size=1, padding=0 | ||
) | ||
|
||
def forward(self, x: torch.Tensor) -> torch.Tensor: | ||
x = self.conv1(x) | ||
return x | ||
|
||
|
||
def create_model(**kwargs: Any) -> Module: | ||
return ChangeDetectionTestModel(**kwargs) | ||
|
||
|
||
def plot(*args: Any, **kwargs: Any) -> None: | ||
return None | ||
|
||
|
||
def plot_missing_bands(*args: Any, **kwargs: Any) -> None: | ||
raise RGBBandsMissingError() | ||
|
||
|
||
class PredictChangeDetectionDataModule(OSCDDataModule): | ||
def setup(self, stage: str) -> None: | ||
self.predict_dataset = OSCD(**self.kwargs) | ||
|
||
|
||
class TestChangeDetectionTask: | ||
@pytest.mark.parametrize('name', ['oscd']) | ||
def test_trainer( | ||
self, monkeypatch: MonkeyPatch, name: str, fast_dev_run: bool | ||
) -> None: | ||
config = os.path.join('tests', 'conf', name + '.yaml') | ||
|
||
monkeypatch.setattr(smp, 'Unet', create_model) | ||
|
||
args = [ | ||
'--config', | ||
config, | ||
'--trainer.accelerator', | ||
'cpu', | ||
'--trainer.fast_dev_run', | ||
str(fast_dev_run), | ||
'--trainer.max_epochs', | ||
'1', | ||
'--trainer.log_every_n_steps', | ||
'1', | ||
] | ||
|
||
main(['fit', *args]) | ||
try: | ||
main(['test', *args]) | ||
except MisconfigurationException: | ||
pass | ||
try: | ||
main(['predict', *args]) | ||
except MisconfigurationException: | ||
pass | ||
|
||
def test_predict(self, fast_dev_run: bool) -> None: | ||
datamodule = PredictChangeDetectionDataModule( | ||
root=os.path.join('tests', 'data', 'oscd'), | ||
batch_size=2, | ||
patch_size=32, | ||
val_split_pct=0.5, | ||
num_workers=0, | ||
) | ||
model = ChangeDetectionTask(backbone='resnet18', in_channels=13, model='unet') | ||
trainer = Trainer( | ||
accelerator='cpu', | ||
fast_dev_run=fast_dev_run, | ||
log_every_n_steps=1, | ||
max_epochs=1, | ||
) | ||
trainer.predict(model=model, datamodule=datamodule) | ||
|
||
@pytest.fixture | ||
def weights(self) -> WeightsEnum: | ||
return ResNet18_Weights.SENTINEL2_ALL_MOCO | ||
|
||
@pytest.fixture | ||
def mocked_weights( | ||
self, | ||
tmp_path: Path, | ||
monkeypatch: MonkeyPatch, | ||
weights: WeightsEnum, | ||
load_state_dict_from_url: None, | ||
) -> WeightsEnum: | ||
path = tmp_path / f'{weights}.pth' | ||
# multiply in_chans by 2 since images are concatenated | ||
isaaccorley marked this conversation as resolved.
Show resolved
Hide resolved
|
||
model = timm.create_model( | ||
weights.meta['model'], in_chans=weights.meta['in_chans'] * 2 | ||
) | ||
torch.save(model.state_dict(), path) | ||
try: | ||
monkeypatch.setattr(weights.value, 'url', str(path)) | ||
except AttributeError: | ||
monkeypatch.setattr(weights, 'url', str(path)) | ||
return weights | ||
|
||
@pytest.mark.parametrize('model', [6], indirect=True) | ||
isaaccorley marked this conversation as resolved.
Show resolved
Hide resolved
|
||
def test_weight_file(self, checkpoint: str) -> None: | ||
ChangeDetectionTask(backbone='resnet18', weights=checkpoint) | ||
|
||
def test_weight_enum(self, mocked_weights: WeightsEnum) -> None: | ||
ChangeDetectionTask( | ||
backbone=mocked_weights.meta['model'], | ||
weights=mocked_weights, | ||
in_channels=mocked_weights.meta['in_chans'], | ||
) | ||
|
||
def test_weight_str(self, mocked_weights: WeightsEnum) -> None: | ||
ChangeDetectionTask( | ||
backbone=mocked_weights.meta['model'], | ||
weights=str(mocked_weights), | ||
in_channels=mocked_weights.meta['in_chans'], | ||
) | ||
|
||
@pytest.mark.slow | ||
def test_weight_enum_download(self, weights: WeightsEnum) -> None: | ||
ChangeDetectionTask( | ||
backbone=weights.meta['model'], | ||
weights=weights, | ||
in_channels=weights.meta['in_chans'], | ||
) | ||
|
||
@pytest.mark.slow | ||
def test_weight_str_download(self, weights: WeightsEnum) -> None: | ||
ChangeDetectionTask( | ||
backbone=weights.meta['model'], | ||
weights=str(weights), | ||
in_channels=weights.meta['in_chans'], | ||
) | ||
|
||
@pytest.mark.parametrize('model_name', ['unet', 'fcsiamdiff', 'fcsiamconc']) | ||
@pytest.mark.parametrize( | ||
'backbone', ['resnet18', 'mobilenet_v2', 'efficientnet-b0'] | ||
) | ||
def test_freeze_backbone( | ||
self, model_name: Literal['unet', 'fcsiamdiff', 'fcsiamconc'], backbone: str | ||
) -> None: | ||
model = ChangeDetectionTask( | ||
model=model_name, backbone=backbone, freeze_backbone=True | ||
) | ||
assert all( | ||
[param.requires_grad is False for param in model.model.encoder.parameters()] | ||
) | ||
assert all([param.requires_grad for param in model.model.decoder.parameters()]) | ||
assert all( | ||
[ | ||
param.requires_grad | ||
for param in model.model.segmentation_head.parameters() | ||
] | ||
) | ||
|
||
@pytest.mark.parametrize('model_name', ['unet', 'fcsiamdiff', 'fcsiamconc']) | ||
def test_freeze_decoder( | ||
self, model_name: Literal['unet', 'fcsiamdiff', 'fcsiamconc'] | ||
) -> None: | ||
model = ChangeDetectionTask(model=model_name, freeze_decoder=True) | ||
assert all( | ||
[param.requires_grad is False for param in model.model.decoder.parameters()] | ||
) | ||
assert all([param.requires_grad for param in model.model.encoder.parameters()]) | ||
assert all( | ||
[ | ||
param.requires_grad | ||
for param in model.model.segmentation_head.parameters() | ||
] | ||
) | ||
|
||
@pytest.mark.parametrize('loss_fn', ['bce', 'jaccard', 'focal']) | ||
def test_losses(self, loss_fn: Literal['bce', 'jaccard', 'focal']) -> None: | ||
ChangeDetectionTask(loss=loss_fn) | ||
|
||
def test_no_plot_method(self, monkeypatch: MonkeyPatch, fast_dev_run: bool) -> None: | ||
monkeypatch.setattr(OSCDDataModule, 'plot', plot) | ||
datamodule = OSCDDataModule( | ||
root=os.path.join('tests', 'data', 'oscd'), | ||
batch_size=2, | ||
patch_size=32, | ||
val_split_pct=0.5, | ||
num_workers=0, | ||
) | ||
model = ChangeDetectionTask(backbone='resnet18', in_channels=13, model='unet') | ||
trainer = Trainer( | ||
accelerator='cpu', | ||
fast_dev_run=fast_dev_run, | ||
log_every_n_steps=1, | ||
max_epochs=1, | ||
) | ||
trainer.validate(model=model, datamodule=datamodule) | ||
|
||
def test_no_rgb(self, monkeypatch: MonkeyPatch, fast_dev_run: bool) -> None: | ||
monkeypatch.setattr(OSCDDataModule, 'plot', plot_missing_bands) | ||
datamodule = OSCDDataModule( | ||
root=os.path.join('tests', 'data', 'oscd'), | ||
batch_size=2, | ||
patch_size=32, | ||
val_split_pct=0.5, | ||
num_workers=0, | ||
) | ||
model = ChangeDetectionTask(backbone='resnet18', in_channels=13, model='unet') | ||
trainer = Trainer( | ||
accelerator='cpu', | ||
fast_dev_run=fast_dev_run, | ||
log_every_n_steps=1, | ||
max_epochs=1, | ||
) | ||
trainer.validate(model=model, datamodule=datamodule) |
Oops, something went wrong.
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
Uh oh!
There was an error while loading. Please reload this page.