Skip to content

mishushakov/llm-scraper

Repository files navigation

LLM Scraper

Screenshot 2024-04-20 at 23 11 16

LLM Scraper is a TypeScript library that allows you to extract structured data from any webpage using LLMs.

Important

LLM Scraper was updated to version 1.6.

The new version comes with Vercel AI SDK 4 support, JSON Schema, better type-safety, improved code generation and updated examples.

Tip

Under the hood, it uses function calling to convert pages to structured data. You can find more about this approach here.

Features

  • Supports GPT, Sonnet, Gemini, Llama, Qwen model series
  • Schemas defined with Zod or JSON Schema
  • Full type-safety with TypeScript
  • Based on Playwright framework
  • Streaming objects
  • Code-generation
  • Supports 4 formatting modes:
    • html for loading pre-processed HTML
    • raw_html for loading raw HTML (no processing)
    • markdown for loading markdown
    • text for loading extracted text (using Readability.js)
    • image for loading a screenshot (multi-modal only)

Make sure to give it a star!

Screenshot 2024-04-20 at 22 13 32

Getting started

  1. Install the required dependencies from npm:

    npm i zod playwright llm-scraper
    
  2. Initialize your LLM:

    OpenAI

    npm i @ai-sdk/openai
    
    import { openai } from '@ai-sdk/openai'
    
    const llm = openai.chat('gpt-4o')

    Anthropic

    npm i @ai-sdk/anthropic
    
    import { anthropic } from '@ai-sdk/anthropic'
    
    const llm = anthropic('claude-3-5-sonnet-20240620')

    Google

    npm i @ai-sdk/google
    
    import { google } from '@ai-sdk/google'
    
    const llm = google('gemini-1.5-flash')

    Groq

    npm i @ai-sdk/openai
    
    import { createOpenAI } from '@ai-sdk/openai'
    const groq = createOpenAI({
      baseURL: 'https://api.groq.com/openai/v1',
      apiKey: process.env.GROQ_API_KEY,
    })
    
    const llm = groq('llama3-8b-8192')

    Ollama

    npm i ollama-ai-provider
    
    import { ollama } from 'ollama-ai-provider'
    
    const llm = ollama('llama3')
  3. Create a new scraper instance provided with the llm:

    import LLMScraper from 'llm-scraper'
    
    const scraper = new LLMScraper(llm)

Example

In this example, we're extracting top stories from HackerNews:

import { chromium } from 'playwright'
import { z } from 'zod'
import { openai } from '@ai-sdk/openai'
import LLMScraper from 'llm-scraper'

// Launch a browser instance
const browser = await chromium.launch()

// Initialize LLM provider
const llm = openai.chat('gpt-4o')

// Create a new LLMScraper
const scraper = new LLMScraper(llm)

// Open new page
const page = await browser.newPage()
await page.goto('https://news.ycombinator.com')

// Define schema to extract contents into
const schema = z.object({
  top: z
    .array(
      z.object({
        title: z.string(),
        points: z.number(),
        by: z.string(),
        commentsURL: z.string(),
      })
    )
    .length(5)
    .describe('Top 5 stories on Hacker News'),
})

// Run the scraper
const { data } = await scraper.run(page, schema, {
  format: 'html',
})

// Show the result from LLM
console.log(data.top)

await page.close()
await browser.close()

Output

[
  {
    title: "Palette lighting tricks on the Nintendo 64",
    points: 105,
    by: "ibobev",
    commentsURL: "https://news.ycombinator.com/item?id=44014587",
  },
  {
    title: "Push Ifs Up and Fors Down",
    points: 187,
    by: "goranmoomin",
    commentsURL: "https://news.ycombinator.com/item?id=44013157",
  },
  {
    title: "JavaScript's New Superpower: Explicit Resource Management",
    points: 225,
    by: "olalonde",
    commentsURL: "https://news.ycombinator.com/item?id=44012227",
  },
  {
    title: "\"We would be less confidential than Google\" Proton threatens to quit Switzerland",
    points: 65,
    by: "taubek",
    commentsURL: "https://news.ycombinator.com/item?id=44014808",
  },
  {
    title: "OBNC – Oberon-07 Compiler",
    points: 37,
    by: "AlexeyBrin",
    commentsURL: "https://news.ycombinator.com/item?id=44013671",
  }
]

More examples can be found in the examples folder.

Streaming

Replace your run function with stream to get a partial object stream (Vercel AI SDK only).

// Run the scraper in streaming mode
const { stream } = await scraper.stream(page, schema)

// Stream the result from LLM
for await (const data of stream) {
  console.log(data.top)
}

Code-generation

Using the generate function you can generate re-usable playwright script that scrapes the contents according to a schema.

// Generate code and run it on the page
const { code } = await scraper.generate(page, schema)
const result = await page.evaluate(code)
const data = schema.parse(result)

// Show the parsed result
console.log(data.news)

Contributing

As an open-source project, we welcome contributions from the community. If you are experiencing any bugs or want to add some improvements, please feel free to open an issue or pull request.

Releases

No releases published

Packages

No packages published

Contributors 2

  •  
  •