Skip to content

mitmedialab/ai-harmonizer-nime2025

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

AI Harmonizer

This is the implementation of our paper AI Harmonizer: Expanding Vocal Expression with a Generative Neurosymbolic Music AI System. It is based on the amazing project RVC-Project/Retrieval-based-Voice-Conversion-WebUI.

Caution

This repository uses by default an Anticipatory Music Transformer (AMT) finetuned on the JSB Chorales dataset, which is accessible here: https://huggingface.co/mitmedialab/jsbChorales-1000. As such, it is heavily biased towards baroque music. If you would like to explore other genres, we invite you to finetune AMT on another four-part harmony dataset.

How to Use

  1. Make sure that you clone this repository along with its submodules:
git clone --recurse-submodules https://github.com/mitmedialab/ai-harmonizer-nime2025.git
  1. Install voice models following the instructions of the RVC project.

  2. Run the run.sh script.

./run.sh
  1. In the Gradio interface that opens up, select your voice model, load an audio file, and click "Convert!"

Dependencies

This project is made possible thanks to:

Citation

@article{nime2025_84,
  title = {AI Harmonizer: Expanding Vocal Expression with a Generative Neurosymbolic Music AI System},
  author = {Lancelot Blanchard and Cameron Holt and Joseph Paradiso},
  booktitle = {Proceedings of the International Conference on New Interfaces for Musical Expression},
  address = {Canberra, Australia},
  articleno = {84},
  doi = {10.5281/zenodo.15698966},
  editor = {Doga Cavdir and Florent Berthaut},
  issn = {2220-4806},
  month = {June},
  numpages = {4},
  pages = {578--581},
  track = {Paper},
  url = {http://nime.org/proceedings/2025/nime2025_84.pdf},
  year = {2025}
}

About

The implementation of our NIME 2025 paper, allowing automatic harmonization of vocal melodis.

Resources

License

Contributing

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 89.3%
  • Jupyter Notebook 5.0%
  • Shell 3.0%
  • Batchfile 2.3%
  • Dockerfile 0.4%