-
Notifications
You must be signed in to change notification settings - Fork 73
A guide to going to the Mun with Principia
- Free return (1211 m/s, 4 h 55 min)
- Hohmann (1144 m/s, 6 h 23 min)
- Low energy transfer: an inner resonance transfer (1031 m/s, 2 days 16 h 41 min)
For Principia first timers, this tutorial pairs nicely with Principia Concepts.
Let us compare different approaches to going to the Mun, and see how to plan them using the tools provided by Principia.
For the following examples, we will start from an 80 km altitude circular Kerbin orbit, and reach a 30 km altitude circular Mun orbit. We will use the spacecraft show below (all tanks full), and perform both burns using the main engine (LV-909).
We create a flight plan, set the reference frame to Kerbin-centred non-rotating, and create a manœuvre. We give it enough tangent Δv to reach the orbit of the Mun. This part is very similar to stock.











Let us look at a more common Mun transfer, the Hohmann-like approach with which veteran players of KSP will be familiar. The planning of the injection burn is very similar to the free return case above, except we aim for the other side of the Mun, which is far cheaper.
We aim for the Mun, on the cheap side.





While the previous two transfers were usual KSP operations planned using principia's tools, this one truly relies on N-body dynamics. It gains 10% Δv over the more conventional approach, but takes a lot more time.
We increase the maximal number of steps per segment in our flight plan computations to 10'000, in order to allow the whole transfer to be plotted.
We first plan a manœuvre that aims for the Mun (or rather, a little behind the Mun), but significantly undershoots. However, in doing so it passes close enough to the L1 libration point to be boosted a little.






Let us now switch back to the Mun-centred non-rotating frame to plan our circularization burn.

Principia for Kerbal Space Program. For support, join the IRC, or go to the KSP-RO discord server and go to the respective channel.
- Laplace
- Landau
- Lánczos
- Lamé
- Lambert
- Laguerre
- Lagrange
- Lagny
- خیام
- خوارزمی
- Kuratowski
- Kummer
- Крылов
- Kronecker
- Колмогоров
- von Koch
- Klein
- Kleene
- 𒁹𒆠𒁷𒉡
- کاشانی
- Καραθεοδωρή
- Канторович
- 掛谷
- Julia
- Jordan
- 賈憲
- 𓇹𓄟𓋴𓏲
- Jensen
- Jacobi
- 岩澤
- 伊藤
- ابن الهيثم
- Ὑπατία
- Hurwitz
- Householder
- Horner
- l’Hôpital
- Ἱπποκράτης
- Ἱππίας
- Ἵππασος
- Ἵππαρχος
- Hilbert
- Hesse
- Ἥρων
- Hermite
- Heine
- Hausdorff
- हरीश चंद्र
- Hardy
- Hamilton
- Halley
- Hadamard
- Haar
- Grothendieck
- Grossmann
- Gröbner
- Green
- Grassmann
- Goldbach
- Gödel
- Germain
- Гельфонд
- Гельфанд
- Gauss
- Gateaux
- Galois
- Gallai
- Galileo
- Fuchs
- Fubini
- Frobenius
- Frenet
- Frege
- Fréchet
- פרנקל
- Fourier
- Fibonacci
- del Ferro
- Ferrari
- Fermat
- Fatou
- Fáry
- Fano
- Euler
- Εὐκλείδης
- Εὔδοξος
- Erdős
- Ἐρατοσθένης
- Διόφαντος
- Descartes
- Desargues
- Δημόκριτος
- Dedekind
- Darboux
- Cramer
- Coxeter
- Cohen
- Clifford
- Christoffel
- 陈景润
- Chasles
- Cesàro
- Чебышёв
- Cayley
- Cauchy
- Catalan
- Cartan
- Cardano
- Cantor
- بوژگانی
- Burnside
- Буняковский
- Buffon
- Brouwer
- Bourbaki
- Borel
- Bolzano
- Bessel
- Бернштейн
- Bernoulli
- Banach
- Agnesi
- Ackermann
- Abel


