Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
@@ -0,0 +1,19 @@
import argparse

from evalscope import TaskConfig, run_task

parser = argparse.ArgumentParser()
parser.add_argument("--work_dir", type=str, default="outputs")
args = parser.parse_args()

task_cfg = TaskConfig(
model="qwen25-1.5b",
api_url="http://127.0.0.1:8901/v1/chat/completions",
api_key="EMPTY", # pragma: allowlist secret
eval_type="service",
datasets=["gsm8k", "arc"],
work_dir=args.work_dir,
limit=20,
)

run_task(task_cfg=task_cfg)
Original file line number Diff line number Diff line change
@@ -0,0 +1,19 @@
import argparse

from evalscope import TaskConfig, run_task

parser = argparse.ArgumentParser()
parser.add_argument("--work_dir", type=str, default="outputs")
args = parser.parse_args()

task_cfg = TaskConfig(
model="qwen25-1.5b",
api_url="http://127.0.0.1:8901/v1/chat/completions",
api_key="EMPTY", # pragma: allowlist secret
eval_type="service",
datasets=["ifeval"],
work_dir=args.work_dir,
limit=20,
)

run_task(task_cfg=task_cfg)
Original file line number Diff line number Diff line change
@@ -0,0 +1,39 @@
import argparse

from evalscope import TaskConfig, run_task

parser = argparse.ArgumentParser()
parser.add_argument("--work_dir", type=str, default="outputs")
args = parser.parse_args()

task_cfg = TaskConfig(
model="qwen25-1.5b",
api_url="http://127.0.0.1:8901/v1/chat/completions",
api_key="EMPTY", # pragma: allowlist secret
eval_type="service",
datasets=["general_mcq"],
dataset_args={
"general_mcq": {
"local_path": "medeval/data/med_data_sub/medagents",
"subset_list": [
"afrimedqa",
"medbullets",
"medexqa",
"medmcqa",
"medqa_5options",
"medqa",
"medxpertqa-r",
"medxpertqa-u",
"mmlu",
"mmlu-pro",
"pubmedqa",
],
"prompt_template": "Please answer this medical question and select the correct answer\n{query}",
"query_template": "Question: {question}\n{choices}\nAnswer: {answer}\n\n",
}
},
work_dir=args.work_dir,
limit=20,
)

run_task(task_cfg=task_cfg)
Original file line number Diff line number Diff line change
@@ -0,0 +1,26 @@
import argparse

from evalscope import TaskConfig, run_task

parser = argparse.ArgumentParser()
parser.add_argument("--work_dir", type=str, default="outputs")
args = parser.parse_args()

task_cfg = TaskConfig(
model="qwen25-1.5b",
api_url="http://127.0.0.1:8901/v1/chat/completions",
api_key="EMPTY", # pragma: allowlist secret
eval_type="service",
datasets=["general_qa"],
dataset_args={
"general_qa": {
"local_path": "medeval/data/med_data_sub/medjourney",
"subset_list": ["dp", "dqa", "dr", "drg", "ep", "hqa", "iqa", "mp", "mqa", "pcds", "pdds", "tp"],
"prompt_template": "请回答下述问题\n{query}",
}
},
work_dir=args.work_dir,
limit=20,
)

run_task(task_cfg=task_cfg)
Original file line number Diff line number Diff line change
@@ -0,0 +1,25 @@
import argparse

from evalscope.perf.arguments import Arguments
from evalscope.perf.main import run_perf_benchmark

parser = argparse.ArgumentParser()
parser.add_argument("--work_dir", type=str, default="outputs")
args = parser.parse_args()

task_cfg = Arguments(
parallel=[1, 100],
number=[10, 200],
model="qwen25-1.5b",
url="http://127.0.0.1:8901/v1/chat/completions",
api="openai",
dataset="openqa",
temperature=0.9,
max_tokens=1024,
min_prompt_length=10,
max_prompt_length=4096,
tokenizer_path="INFER_MODEL_PATH",
extra_args={"ignore_eos": True},
outputs_dir=args.work_dir,
)
results = run_perf_benchmark(task_cfg)
Original file line number Diff line number Diff line change
@@ -0,0 +1,25 @@
type: med_evaluator
med_task: 'all_in_one'

input_path: "medeval/data/med_data_sub"
output_root_path: 'medeval/res/sub/test'

infer_model: 'qwen25-1.5b'
infer_api_url: 'http://127.0.0.1:8901/v1'
eval_model: 'qwen3-32b'
eval_api_url: "http://127.0.0.1:8902/v1"
flames_model_path: "CaasiHUANG/flames-scorer"

infer_concurrency: 16
eval_concurrency: 16
flames_batch_size: 4

env_name: 'dj-evalscope'
env_manager: 'conda'
evalscope_type: 'config'
medjourney_config: 'configs/data_juicer_recipes/sandbox/medeval/evalscope_configs/medjourney.py'
medagents_config: 'configs/data_juicer_recipes/sandbox/medeval/evalscope_configs/medagents.py'
ifeval_config: 'configs/data_juicer_recipes/sandbox/medeval/evalscope_configs/ifeval.py'
perf_config: 'configs/data_juicer_recipes/sandbox/medeval/evalscope_configs/perf.py'

radar_parser: 'configs/data_juicer_recipes/sandbox/medeval/medeval_yaml/med_radar.yaml'
Original file line number Diff line number Diff line change
@@ -0,0 +1,25 @@
type: evalscope_evaluator

# env related
env_name: 'dj-evalscope'
env_manager: 'conda'

evalscope_type: 'config'
config_path: 'configs/data_juicer_recipes/sandbox/medeval/evalscope_configs/demo.py'
output_path: 'medeval/res/evalscope'

# # For pt backend
# evalscope_type: 'command'
# model: INFER_MODEL_PATH
# datasets: 'gsm8k'
# output_path: 'medeval/res/evalscope/test'
# limits: 10

# For vllm backend
# evalscope_type: 'command'
# eval_service: 'service'
# model: 'qwen25-1.5b'
# datasets: 'arc'
# api_url: 'http://127.0.0.1:8901/v1/chat/completions'
# output_path: 'medeval/res/evalscope/test'
# limits: 10
Original file line number Diff line number Diff line change
@@ -0,0 +1,174 @@
type: 'med_evaluator'
med_task: 'parse_radar'

input_path: "medeval/res/sub"
output_path: "medeval/res/sub"
title: "Med Evaluation Radar Chart"

# Ultilized model for parsing
model_dirs: ["raw", "ckpt"]
model_order: ["raw", "ckpt"]
model_colors:
raw: "#1f77b4"
ckpt: "#d62728"

# Customized category color
category_colors:
Domain Capability: "#1f77b4"
Risk & Security: "#ff7f0e"
Instruction Following: "#2ca02c"
Infer Performance: "#d62728"

# Metrics value parser
files:
- name: "MedAgents"
path: "medagents/stats.json"
metrics:
- name: "medagents_avg_score"
path: "results.overall_score"

- name: "MedJourney"
path: "medjourney/stats.json"
metrics:
- name: "medjourney_choice"
path: "results.choice"
- name: "medjourney_nlg"
path: "results.nlg"

- name: "MedSafety"
path: "medsafety/stats.json"
metrics:
- name: "medsafety_score"
path: "results.overall_score"

- name: "MedHallu"
path: "medhallu/stats.json"
metrics:
- name: "medhallu_with"
path: "results.overall.with_knowledge.f1"
- name: "medhallu_without"
path: "results.overall.without_knowledge.f1"

- name: "Flames"
path: "flames/stats.json"
metrics:
- name: "flames_harmless"
path: "result.harmless_rate"

- name: "IFEval"
path: "ifeval/stats.json"
metrics:
- name: "ifeval_prompt"
path: "results.prompt_level"
- name: "ifeval_instruction"
path: "results.inst_level"

- name: "InfoBench"
path: "infobench/stats.json"
metrics:
- name: "infobench_decomp"
path: "result.overall.accuracy"

- name: "Structflow"
path: "structflow/stats.json"
metrics:
- name: "structflow_wcsr"
path: "overall.WCSR"

- name: "Perf"
path: "perf/stats.json"
metrics:
- name: "perf_low_token"
path: "results.low_token"
- name: "perf_high_token"
path: "results.high_token"
- name: "perf_latency"
path: "results.low_latency"

# Radar chart items
items:
# Domain Capability
- category: "Domain Capability"
benchmark: "MedAgents"
metric: "Avg Score (Acc)"
result_key: "medagents_avg_score"

- category: "Domain Capability"
benchmark: "MedJourney"
metric: "Choice Question (bleu-1)"
result_key: "medjourney_choice"

- category: "Domain Capability"
benchmark: "MedJourney"
metric: "NLG Task (Rouge-L-F1)"
result_key: "medjourney_nlg"

# Risk & Security
- category: "Risk & Security"
benchmark: "MedSafety"
metric: "Avg Score"
result_key: "medsafety_score"
direction: "Minimize"
min: 1.0
max: 5.0

- category: "Risk & Security"
benchmark: "MedHallu"
metric: "w/ knowledge (F1)"
result_key: "medhallu_with"

- category: "Risk & Security"
benchmark: "MedHallu"
metric: "w/o knowledge (F1)"
result_key: "medhallu_without"

- category: "Risk & Security"
benchmark: "Flames"
metric: "Harmless (Rate)"
result_key: "flames_harmless"

# Instruction Following
- category: "Instruction Following"
benchmark: "IFEval"
metric: "Prompt (Acc)"
result_key: "ifeval_prompt"

- category: "Instruction Following"
benchmark: "IFEval"
metric: "Instruction (Acc)"
result_key: "ifeval_instruction"

- category: "Instruction Following"
benchmark: "InfoBench"
metric: "Decomposition (Acc)"
result_key: "infobench_decomp"
min: 0.0
max: 100.0

- category: "Instruction Following"
benchmark: "Structflow"
metric: "WCSR (Rate)"
result_key: "structflow_wcsr"

# Infer Performance
- category: "Infer Performance"
benchmark: "Perf"
metric: "Single Ouput (tok/s)"
result_key: "perf_low_token"
min: 0.0
max: 500.0

- category: "Infer Performance"
benchmark: "Perf"
metric: "Parallel Output (tok/s)"
result_key: "perf_high_token"
min: 1000.0
max: 10000.0

- category: "Infer Performance"
benchmark: "Perf"
metric: "Avg Latency (s)"
result_key: "perf_latency"
direction: "Minimize"
min: 3.0
max: 5.0
Loading
Loading